EzCatDB

R L C P
Hierarchic Classification of Catalytic Mechanisms


R 6.-.-.- : Exchange of double-bonded atoms (Schiff-base related reaction) (Reaction)

L 6.40.-.- : Exchange of Schiff-base nitrogen atoms (internal aldimine formation) (Ligand group involved)

C 6.40.528600.- : Nucleophile/Modulator; Modulator-assisted nucleophile attacks on double-bond partner atom; Formation of tetrahedral intermediate; Organic-cofactor-assisted proton transfer between nucleophile and leaving group; Lone pair on nucleophile attacks on double-bond partner atom; substrate-assisted protonation to leaving group (Catalytic mechanism)

P 6.40.528600.5540 : Lys + hydroxyl residue (Thr or Ser) + PLP double-bonded to substrate/intermediate (Residues/cofactors in Protein)


1st Nucleophile : a catalytic residue
Catalytic groups : cofactor + groups in residue/substrate
General Base : non-existent
General Acid : a group in substrate/cofactor

Related Enzymes

There is one entry in this class.
  • D00085 : (reaction 6) 2.1.2.1; Serine hydroxymethyltransferase (Catalytic domain; 3.40.640.10)
  • Copyright: Nozomi Nagano, JST & CBRC-AIST
    Funded by PRESTO/Japan Science and Technology Agency (JST) (December 2001 - November 2004)
    Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
    Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
    Funded by BIRD/Japan Science and Technology Agency (JST) (September 2005 - September 2008)
    Funded by BIRD/Japan Science and Technology Agency (JST) (October 2007 - September 2010)
    Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)
    Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2012 - March 2013)
    Supported by the commission for the Development of Artificial Gene Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI) (October 2012 - March 2016)
    Funded by the project commissioned by the New Energy and Industrial Technology Development Organization (NEDO) (April 2016 -)