EzCatDB: D00085
Related links:    PDB-formatted query search system Fasta-formatted query search system Fasta-formatted query search system

DB codeD00085
RLCP classification6.30.264850.5200 : Double-bonded atom exchange
3.748.90280.5472 : Transfer
5.12.1504210.1 : Elimination
4.202.3822800.1 : Addition
8.11211.913550.5730 : Isomerization
6.40.528600.5540 : Double-bonded atom exchange
CATH domainDomain 13.40.640.10 : Aspartate Aminotransferase; domain 2Catalytic domain
Domain 23.90.1150.10 : Aspartate Aminotransferase, domain 1
E.C.2.1.2.1
CSA1dfo
MACiEM0147

CATH domainRelated DB codes (homologues)
3.40.640.10 : Aspartate Aminotransferase; domain 2D00092,D00101,D00102,D00103,D00104,D00107,D00108,D00109,D00255,D00257,D00258,D00265,D00269,D00515,M00031,D00279
3.90.1150.10 : Aspartate Aminotransferase, domain 1D00092,D00101,D00102,D00103,D00104,D00107,D00108,D00109,D00255,D00257,D00258,D00265,D00269,D00515,M00031,D00279

Enzyme Name
UniProtKBKEGG

P0A825Q5SI56Q7SIB6P50431P07511P34896P34897
Protein nameSerine hydroxymethyltransferaseSerine hydroxymethyltransferaseSerine hydroxymethyltransferaseSerine hydroxymethyltransferase, cytosolicSerine hydroxymethyltransferase, cytosolicSerine hydroxymethyltransferase, cytosolicSerine hydroxymethyltransferase, mitochondrialglycine hydroxymethyltransferase
serine aldolase
threonine aldolase
serine hydroxymethylase
serine hydroxymethyltransferase
allothreonine aldolase
L-serine hydroxymethyltransferase
L-threonine aldolase
serine hydroxymethyltransferase
serine transhydroxymethylase
SynonymsSHMT
Serine methylase
EC 2.1.2.1
SHMT
Serine methylase
EC 2.1.2.1
SHMT
Serine methylase
EC 2.1.2.1
SHMT
EC 2.1.2.1
Glycine hydroxymethyltransferase
Serine methylase
SHMT
EC 2.1.2.1
Glycine hydroxymethyltransferase
Serine methylase
SHMT
EC 2.1.2.1
Glycine hydroxymethyltransferase
Serine methylase
SHMT
EC 2.1.2.1
Glycine hydroxymethyltransferase
Serine methylase
RefSeqNP_417046.1 (Protein)
NC_000913.2 (DNA/RNA sequence)
YP_490779.1 (Protein)
NC_007779.1 (DNA/RNA sequence)
YP_144790.1 (Protein)
NC_006461.1 (DNA/RNA sequence)

NP_033197.2 (Protein)
NM_009171.2 (DNA/RNA sequence)
NP_001095187.1 (Protein)
NM_001101717.1 (DNA/RNA sequence)
NP_004160.3 (Protein)
NM_004169.3 (DNA/RNA sequence)
NP_683718.1 (Protein)
NM_148918.1 (DNA/RNA sequence)
NP_001159828.1 (Protein)
NM_001166356.1 (DNA/RNA sequence)
NP_001159829.1 (Protein)
NM_001166357.1 (DNA/RNA sequence)
NP_001159830.1 (Protein)
NM_001166358.1 (DNA/RNA sequence)
NP_001159831.1 (Protein)
NM_001166359.1 (DNA/RNA sequence)
NP_005403.2 (Protein)
NM_005412.5 (DNA/RNA sequence)
PfamPF00464 (SHMT)
[Graphical view]
PF00464 (SHMT)
[Graphical view]
PF00464 (SHMT)
[Graphical view]
PF00464 (SHMT)
[Graphical view]
PF00464 (SHMT)
[Graphical view]
PF00464 (SHMT)
[Graphical view]
PF00464 (SHMT)
[Graphical view]

KEGG pathways
MAP codePathways
MAP00260Glycine, serine and threonine metabolism
MAP00460Cyanoamino acid metabolism
MAP00670One carbon pool by folate
MAP00680Methane metabolism

UniProtKB:Accession NumberP0A825Q5SI56Q7SIB6P50431P07511P34896P34897
Entry nameGLYA_ECOLIGLYA_THET8Q7SIB6_BACSTGLYC_MOUSEGLYC_RABITGLYC_HUMANGLYM_HUMAN
Activity5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.5,10-methylenetetrahydrofolate + glycine + H(2)O = tetrahydrofolate + L-serine.
SubunitHomotetramer.Homotetramer (By similarity).
Homotetramer.Homotetramer.Homotetramer.Homotetramer.
Subcellular locationCytoplasm.Cytoplasm (By similarity).
Cytoplasm.Cytoplasm.Cytoplasm.Mitochondrion.
CofactorPyridoxal phosphate.Pyridoxal phosphate (By similarity).Pyridoxal phosphate.,Pyridoxal phosphate (By similarity).Pyridoxal phosphate (By similarity).Pyridoxal phosphate.Pyridoxal phosphate.Pyridoxal phosphate.

Compound table: links to PDB-related databases & PoSSuM

CofactorsSubstratesProductsintermediates
KEGG-idC00018C00065C00101C00037C00143C00001I00043C00067I00045I00046I00047I00044I00048
CompoundPyridoxal phosphateL-SerineTetrahydrofolateGlycine5,10-MethylenetetrahydrofolateH2OExternal aldimine intermediate (PLP-L-Ser)FormaldehydeQuinonoid intermediate (PLP-Gly)5-hydroxymethylene-tetrahydrofolate5-iminium-tetrahydrofolateExternal aldimine intermediate (PLP-Gly)Gem-diamine transition-state (active-site-Lys-PLP-Gly)
Typearomatic ring (with nitrogen atoms),phosphate group/phosphate ionamino acids,carbohydrateamino acids,amide group,amine group,aromatic ring (only carbon atom),aromatic ring (with nitrogen atoms),carboxyl groupamino acidsamino acids,amide group,amine group,aromatic ring (only carbon atom),aromatic ring (with nitrogen atoms),carboxyl groupH2O






ChEBI18405
17115
33384
15635
20506
15428
57305

15377







PubChem1051
6857581
5951
91443
5460413
750
5257127
439175
962
22247451







                     
1dfoA01Analogue:PLGUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:PLGUnbound
1dfoB01Analogue:PLGUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:PLGUnbound
1dfoC01Analogue:PLGUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:PLGUnbound
1dfoD01Analogue:PLGUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:PLGUnbound
1eqbA01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:GLY-PLPUnbound
1eqbB01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:GLY-PLPUnbound
1eqbC01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:GLY-PLPUnbound
1eqbD01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FFO Intermediate-bound:GLY-PLPUnbound
2dkjA01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2dkjB01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1kkjA02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1kkpA02Bound:PLPUnboundUnboundUnboundUnbound Intermediate-bound:SER-PLP UnboundUnbound UnboundUnbound
1kl1A02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound Intermediate-bound:GLY-PLPUnbound
1kl2A02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FON Intermediate-bound:GLY-PLPUnbound
1kl2B02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:FON Intermediate-bound:GLY-PLPUnbound
1yjsA02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound Intermediate-bound:GLY-PLPUnbound
1yjyA02Bound:PLPUnboundUnboundUnboundUnbound Intermediate-bound:SER-PLP UnboundUnbound UnboundUnbound
1yjzA02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2vgtA01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound Intermediate-bound:GLY-PLPUnbound
2vguA01Bound:PLPUnboundUnboundUnboundUnbound Intermediate-bound:SER-PLP UnboundUnbound UnboundUnbound
2vgvA01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound Intermediate-bound:GLY-PLPUnbound
2vgwA01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundTransition-state-bound:GLY-PLP-LYS 226
2vi9A01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound Intermediate-bound:GLY-PLPUnbound
2viaA01Bound:PLPUnboundUnboundUnboundUnbound Intermediate-bound:SER-PLP UnboundUnbound UnboundUnbound
2vibA01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound Intermediate-bound:GLY-PLPUnbound
1ejiA02Analogue:PLGUnboundUnboundUnboundUnbound Unbound Intermediate-bound:PLGIntermediate-bound:THF UnboundUnbound
1ejiB02Analogue:PLGUnboundUnboundUnboundUnbound Unbound Intermediate-bound:PLGIntermediate-bound:THF UnboundUnbound
1ejiC02Analogue:PLGUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundTransition-state-bound:PLG-LYS 257
1ejiD02Analogue:PLGUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-bound:THF UnboundTransition-state-bound:PLG-LYS 257
1cj0A02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1cj0B02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ls3A02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundTransition-state-bound:GLY-PLP-LYS 229
1ls3B02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:TGF UnboundUnbound
1ls3C02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundTransition-state-bound:GLY-PLP-LYS 229
1ls3D02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundIntermediate-analogue:TGF UnboundUnbound
1rv3A02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rv3B02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundTransition-state-bound:GLY-PLP-LYS 257
1rv4A02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rv4B02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rvuA02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rvuB02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rvyA02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundTransition-state-bound:PLG-LYS 257
1rvyB02Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1bj4A01Bound:PLPUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2a7vA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1dfoA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1dfoB02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1dfoC02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1dfoD02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1eqbA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1eqbB02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1eqbC02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1eqbD02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2dkjA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2dkjB02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1kkjA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1kkpA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1kl1A01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1kl2A01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1kl2B01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1yjsA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1yjyA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1yjzA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2vgtA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2vguA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2vgvA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2vgwA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2vi9A02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2viaA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2vibA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ejiA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ejiB01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ejiC01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ejiD01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1cj0A01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1cj0B01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ls3A01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ls3B01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ls3C01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1ls3D01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rv3A01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rv3B01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rv4A01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rv4B01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rvuA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rvuB01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rvyA01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1rvyB01UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
1bj4A02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound
2a7vA02UnboundUnboundUnboundUnboundUnbound Unbound UnboundUnbound UnboundUnbound

Active-site residues
resource
literature[26], [30], [31], [38], [41], [46], [48]
pdbCatalytic residuesCofactor-binding residuescomment
           
1dfoA01GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1dfoB01GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1dfoC01GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1dfoD01GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1eqbA01GLU 57;      ;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
mutant Y65F
1eqbB01GLU 57;      ;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
mutant Y65F
1eqbC01GLU 57;      ;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
mutant Y65F
1eqbD01GLU 57;      ;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
mutant Y65F
2dkjA01GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
 
2dkjB01GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
 
1kkjA02GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
 
1kkpA02GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
 
1kl1A02GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
 
1kl2A02GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
 
1kl2B02GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
 
1yjsA02GLU 53;TYR 61;ASP 197;THR 223;       
                                    
mutant K226Q
1yjyA02GLU 53;TYR 61;ASP 197;THR 223;       
                                    
mutant K226M
1yjzA02GLU 53;TYR 61;ASP 197;THR 223;       
                                    
mutant K226M
2vgtA01      ;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
mutant E53Q
2vguA01      ;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
mutant E53Q
2vgvA01      ;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
mutant E53Q
2vgwA01      ;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
mutant E53Q
2vi9A01GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
mutant S172A
2viaA01GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
mutant S172A
2vibA01GLU 53;TYR 61;ASP 197;THR 223;LYS 226
LYS 226(Pyridoxal phosphate binding)
mutant S172A
1ejiA02GLU 75;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
 
1ejiB02GLU 75;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
 
1ejiC02GLU 75;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
 
1ejiD02GLU 75;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
 
1cj0A02GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1cj0B02GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1ls3A02GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1ls3B02GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1ls3C02GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1ls3D02GLU 57;TYR 65;ASP 200;THR 226;LYS 229
LYS 229(Pyridoxal phosphate binding)
 
1rv3A02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75L
1rv3B02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75L
1rv4A02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75L
1rv4B02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75L
1rvuA02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75Q
1rvuB02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75Q
1rvyA02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75Q
1rvyB02      ;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
mutant E75Q
1bj4A01GLU 75;TYR 83;ASP 228;THR 254;LYS 257
LYS 257(Pyridoxal phosphate binding)
 
2a7vA01GLU 82;      ;ASP 235;THR 261;LYS 264
LYS 264(Pyridoxal phosphate binding)
invisible 84-95, 148-178
1dfoA02 
 
 
1dfoB02 
 
 
1dfoC02 
 
 
1dfoD02 
 
 
1eqbA02 
 
 
1eqbB02 
 
 
1eqbC02 
 
 
1eqbD02 
 
 
2dkjA02 
 
 
2dkjB02 
 
 
1kkjA01 
 
 
1kkpA01 
 
 
1kl1A01 
 
 
1kl2A01 
 
 
1kl2B01 
 
 
1yjsA01 
 
 
1yjyA01 
 
 
1yjzA01 
 
 
2vgtA02 
 
 
2vguA02 
 
 
2vgvA02 
 
 
2vgwA02 
 
 
2vi9A02 
 
 
2viaA02 
 
 
2vibA02 
 
 
1ejiA01 
 
 
1ejiB01 
 
 
1ejiC01 
 
 
1ejiD01 
 
 
1cj0A01 
 
 
1cj0B01 
 
 
1ls3A01 
 
 
1ls3B01 
 
 
1ls3C01 
 
 
1ls3D01 
 
 
1rv3A01 
 
 
1rv3B01 
 
 
1rv4A01 
 
 
1rv4B01 
 
 
1rvuA01 
 
 
1rvuB01 
 
 
1rvyA01 
 
 
1rvyB01 
 
 
1bj4A02 
 
 
2a7vA02 
 
 

References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[17]Fig.6, p.24360-24361
[22]Figure 1, p.1105, p.1110-1113
[25]Scheme 1, p.8352-8357
[26]Fig.17, Fig.18, p.394-397
[28]Scheme 1, p.7499
[29]Fig.1, p.13320-13223
[30]Scheme 1, p.5974-5975
[31]Fig.4, p.1443-1446
[33]p.411-413
[34]Scheme 1, p.156-157, p.162-166
[36]Scheme 1
[38]Scheme I, Scheme II, p.17168
[41]Fig.1, p.24-25, p.27-28
[47]Fig.1, p.6865-6867
[49]Scheme 1, p.6930, p.6935-6936
[50]p.4154-4155

references
[1]
PubMed ID3536510
JournalEur J Biochem
Year1986
Volume161
Pages45-9
AuthorsSchirch V, Schirch D, Martini F, Bossa F
TitleSerine hydroxymethyltransferase. Effect of proteases on the activity and structure of the cytosolic enzyme.
[2]
PubMed ID1849406
JournalBiochem J
Year1991
Volume274
Pages807-12
AuthorsMalthouse JP, Milne JJ, Gariani LS
TitleA comparative study of the kinetics and stereochemistry of the serine hydroxymethyltransferase- and tryptophan synthase-catalysed exchange of the pro-2R and pro-2S protons of glycine.
[3]
PubMed ID1765122
JournalExperientia
Year1991
Volume47
Pages1104-18
AuthorsSmith DM, Thomas NR, Gani D
TitleA comparison of pyridoxal 5'-phosphate dependent decarboxylase and transaminase enzymes at a molecular level.
[4]
PubMed ID1536856
JournalBiochemistry
Year1992
Volume31
Pages2155-64
AuthorsStover P, Schirch V
TitleEnzymatic mechanism for the hydrolysis of 5,10-methenyltetrahydropteroylglutamate to 5-formyltetrahydropteroylglutamate by serine hydroxymethyltransferase.
[5]
PubMed ID1577761
JournalJ Biol Chem
Year1992
Volume267
Pages9289-93
AuthorsUsha R, Savithri HS, Rao NA
TitleArginine residues involved in binding of tetrahydrofolate to sheep liver serine hydroxymethyltransferase.
[6]
PubMed ID8405393
JournalFEBS Lett
Year1993
Volume331
Pages145-9
AuthorsPascarella S, Schirch V, Bossa F
TitleSimilarity between serine hydroxymethyltransferase and other pyridoxal phosphate-dependent enzymes.
[7]
PubMed ID8226831
JournalJ Biol Chem
Year1993
Volume268
Pages23132-8
AuthorsSchirch D, Delle Fratte S, Iurescia S, Angelaccio S, Contestabile R, Bossa F, Schirch V
TitleFunction of the active-site lysine in Escherichia coli serine hydroxymethyltransferase.
[8]
PubMed ID8478924
JournalJ Mol Biol
Year1993
Volume230
Pages1094-6
AuthorsStover P, Kruschwitz H, Schirch V, Wright HT
TitleDiffraction grade crystals of Escherichia coli serine hydroxymethyltransferase.
[9]
PubMed ID7947980
JournalBiochim Biophys Acta
Year1994
Volume1209
Pages40-50
AuthorsBhaskar B, Prakash V, Savithri HS, Rao NA
TitleInteractions of L-serine at the active site of serine hydroxymethyltransferases: induction of thermal stability.
[10]
PubMed ID8003988
JournalProtein Sci
Year1994
Volume3
Pages701-5
AuthorsPascarella S, Bossa F
TitleSimilarity between pyridoxal/pyridoxamine phosphate-dependent enzymes involved in dideoxy and deoxyaminosugar biosynthesis and other pyridoxal phosphate enzymes.
[11]
PubMed ID8674620
JournalBiochem Soc Trans
Year1996
Volume24
Pages132S
AuthorsFitzpatrick TB, Malthouse JP
TitleProof that serine hydroxymethyltransferase retains its specificity for the pro-2S proton of glycine in the absence of tetrahydrofolate.
[12]
PubMed ID8910307
JournalJ Biol Chem
Year1996
Volume271
Pages27311-20
AuthorsCai K, Schirch V
TitleStructural studies on folding intermediates of serine hydroxymethyltransferase using fluorescence resonance energy transfer.
[13]
PubMed ID8621691
JournalJ Biol Chem
Year1996
Volume271
Pages2987-94
AuthorsCai K, Schirch V
TitleStructural studies on folding intermediates of serine hydroxymethyltransferase using single tryptophan mutants.
[14]
PubMed ID8860659
JournalProtein Expr Purif
Year1996
Volume7
Pages323-8
AuthorsIurescia S, Condo I, Angelaccio S, Delle Fratte S, Bossa F
TitleSite-directed mutagenesis techniques in the study of Escherichia coli serine hydroxymethyltransferase.
[15]
PubMed ID9584848
JournalActa Biochim Pol
Year1997
Volume44
Pages679-88
AuthorsTalwar R, Jagath JR, Datta A, Prakash V, Savithri HS, Rao NA
TitleThe role of lysine-256 in the structure and function of sheep liver recombinant serine hydroxymethyltransferase.
[16]
PubMed ID9398220
JournalBiochemistry
Year1997
Volume36
Pages14956-64
AuthorsKastanos EK, Woldman YY, Appling DR
TitleRole of mitochondrial and cytoplasmic serine hydroxymethyltransferase isozymes in de novo purine synthesis in Saccharomyces cerevisiae.
[17]
PubMed ID9305893
JournalJ Biol Chem
Year1997
Volume272
Pages24355-62
AuthorsJagath JR, Sharma B, Rao NA, Savithri HS
TitleThe role of His-134, -147, and -150 residues in subunit assembly, cofactor binding, and catalysis of sheep liver cytosolic serine hydroxymethyltransferase.
[18]
CommentsX-ray crystallography
PubMed ID9757129
JournalActa Crystallogr D Biol Crystallogr
Year1998
Volume54
Pages1030-1
AuthorsRenwick SB, Skelly JV, Chave KJ, Sanders PG, Snell K, Baumann U
TitlePurification, crystallization and preliminary X-ray analysis of human recombinant cytosolic serine hydroxymethyltransferase.
Related PDB1bj4
[19]
PubMed ID9523719
JournalEur J Biochem
Year1998
Volume252
Pages113-7
AuthorsFitzpatrick TB, Malthouse JP
TitleA substrate-induced change in the stereospecificity of the serine-hydroxymethyltransferase-catalysed exchange of the alpha-protons of amino acids--evidence for a second catalytic site.
[20]
PubMed ID9843671
JournalJ Struct Biol
Year1998
Volume123
Pages169-74
AuthorsKazanina G, Radaev S, Wright HT, Schirch V
TitleCrystal forms and subunit stoichiometry of serine hydroxymethyltransferase.
[21]
PubMed ID9761478
JournalProtein Sci
Year1998
Volume7
Pages1976-82
AuthorsPascarella S, Angelaccio S, Contestabile R, Delle Fratte S, Di Salvo M, Bossa F
TitleThe structure of serine hydroxymethyltransferase as modeled by homology and validated by site-directed mutagenesis.
[22]
CommentsX-RAY CRYSTALLOGRAPHY (2.65 ANGSTROMS) OF 11-480
Medline ID98428667
PubMed ID9753690
JournalStructure
Year1998
Volume6
Pages1105-16
AuthorsRenwick SB, Snell K, Baumann U
TitleThe crystal structure of human cytosolic serine hydroxymethyltransferase: a target for cancer chemotherapy.
Related UniProtKBP34896
[23]
PubMed ID10600164
JournalArch Biochem Biophys
Year1999
Volume372
Pages271-9
Authorsdi Salvo ML, Delle Fratte S, Maras B, Bossa F, Wright HT, Schirch V
TitleDeamidation of asparagine residues in a recombinant serine hydroxymethyltransferase.
[24]
PubMed ID10493937
JournalBiochem J
Year1999
Volume343 Pt 1
Pages257-63
AuthorsKrishna Rao JV, Jagath JR, Sharma B, Appaji Rao N, Savithri HS
TitleAsp-89: a critical residue in maintaining the oligomeric structure of sheep liver cytosolic serine hydroxymethyltransferase.
[25]
PubMed ID10387080
JournalBiochemistry
Year1999
Volume38
Pages8347-58
AuthorsScarsdale JN, Kazanina G, Radaev S, Schirch V, Wright HT
TitleCrystal structure of rabbit cytosolic serine hydroxymethyltransferase at 2.8 A resolution: mechanistic implications.
Related PDB1cj0
[26]
PubMed ID10828359
JournalAdv Enzyme Regul
Year2000
Volume40
Pages353-403
AuthorsSnell K, Baumann U, Byrne PC, Chave KJ, Renwick SB, Sanders PG, Whitehouse SK
TitleThe genetic organization and protein crystallographic structure of human serine hydroxymethyltransferase.
[27]
PubMed ID10970801
JournalBiochem J
Year2000
Volume350 Pt 3
Pages849-53
AuthorsTalwar R, Leelavathy V, Krishna Rao JV, Appaji Rao N, Savithri HS
TitleRole of pro-297 in the catalytic mechanism of sheep liver serine hydroxymethyltransferase.
[28]
CommentsX-ray crystallography
PubMed ID10858298
JournalBiochemistry
Year2000
Volume39
Pages7492-500
AuthorsContestabile R, Angelaccio S, Bossa F, Wright HT, Scarsdale N, Kazanina G, Schirch V
TitleRole of tyrosine 65 in the mechanism of serine hydroxymethyltransferase.
Related PDB1eqb
[29]
CommentsX-ray crystallography
PubMed ID11063567
JournalBiochemistry
Year2000
Volume39
Pages13313-23
AuthorsSzebenyi DM, Liu X, Kriksunov IA, Stover PJ, Thiel DJ
TitleStructure of a murine cytoplasmic serine hydroxymethyltransferase quinonoid ternary complex: evidence for asymmetric obligate dimers.
Related PDB1eji
[30]
PubMed ID10998057
JournalEur J Biochem
Year2000
Volume267
Pages5967-76
AuthorsRao JV, Prakash V, Rao NA, Savithri HS
TitleThe role of Glu74 and Tyr82 in the reaction catalyzed by sheep liver cytosolic serine hydroxymethyltransferase.
[31]
PubMed ID10691982
JournalEur J Biochem
Year2000
Volume267
Pages1441-6
AuthorsTalwar R, Jagath JR, Rao NA, Savithri HS
TitleHis230 of serine hydroxymethyltransferase facilitates the proton abstraction step in catalysis.
[32]
PubMed ID10716626
JournalInt J Biochem Cell Biol
Year2000
Volume32
Pages289-301
AuthorsOgawa H, Gomi T, Fujioka M
TitleSerine hydroxymethyltransferase and threonine aldolase: are they identical?
[33]
PubMed ID10762066
JournalInt J Biochem Cell Biol
Year2000
Volume32
Pages405-16
AuthorsRao NA, Talwar R, Savithri HS
TitleMolecular organization, catalytic mechanism and function of serine hydroxymethyltransferase--a potential target for cancer chemotherapy.
[34]
CommentsX-RAY CRYSTALLOGRAPHY (2.40 ANGSTROMS)
Medline ID20124005
PubMed ID10656824
JournalJ Mol Biol
Year2000
Volume296
Pages155-68
AuthorsScarsdale JN, Radaev S, Kazanina G, Schirch V, Wright HT
TitleCrystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate.
Related PDB1dfo
Related UniProtKBP0A825
[35]
PubMed ID11305908
JournalBiochemistry
Year2001
Volume40
Pages4932-9
AuthorsLiu X, Szebenyi DM, Anguera MC, Thiel DJ, Stover PJ
TitleLack of catalytic activity of a murine mRNA cytoplasmic serine hydroxymethyltransferase splice variant: evidence against alternative splicing as a regulatory mechanism.
[36]
PubMed ID11737206
JournalEur J Biochem
Year2001
Volume268
Pages6508-25
AuthorsContestabile R, Paiardini A, Pascarella S, di Salvo ML, D'Aguanno S, Bossa F
Titlel-Threonine aldolase, serine hydroxymethyltransferase and fungal alanine racemase. A subgroup of strictly related enzymes specialized for different functions.
[37]
PubMed ID12356312
JournalBiochemistry
Year2002
Volume41
Pages12115-23
AuthorsBhatt AN, Prakash K, Subramanya HS, Bhakuni V
TitleDifferent unfolding pathways for mesophilic and thermophilic homologues of serine hydroxymethyltransferase.
[38]
PubMed ID11877399
JournalJ Biol Chem
Year2002
Volume277
Pages17161-9
AuthorsTrivedi V, Gupta A, Jala VR, Saravanan P, Rao GS, Rao NA, Savithri HS, Subramanya HS
TitleCrystal structure of binary and ternary complexes of serine hydroxymethyltransferase from Bacillus stearothermophilus: insights into the catalytic mechanism.
Related PDB1kkj,1kkp,1kl1,1kl2
[39]
PubMed ID12089472
JournalJ Biosci
Year2002
Volume27
Pages233-42
AuthorsJala VR, Prakash V, Rao NA, Savithri HS
TitleOverexpression and characterization of dimeric and tetrameric forms of recombinant serine hydroxymethyltransferase from Bacillus stearothermophilus.
[40]
PubMed ID12392447
JournalBiochem J
Year2003
Volume369
Pages469-76
AuthorsJala VR, Appaji Rao N, Savithri HS
TitleIdentification of amino acid residues, essential for maintaining the tetrameric structure of sheep liver cytosolic serine hydroxymethyltransferase, by targeted mutagenesis.
[41]
PubMed ID12686103
JournalBiochim Biophys Acta
Year2003
Volume1647
Pages24-9
AuthorsAppaji Rao N, Ambili M, Jala VR, Subramanya HS, Savithri HS
TitleStructure-function relationship in serine hydroxymethyltransferase.
[42]
PubMed ID12686123
JournalBiochim Biophys Acta
Year2003
Volume1647
Pages138-42
AuthorsMalthouse JP
TitleStereospecificity of alpha-proton exchange reactions catalysed by pyridoxal-5'-phosphate-dependent enzymes.
[43]
PubMed ID12902326
JournalJ Biol Chem
Year2003
Volume278
Pages41789-97
AuthorsAngelaccio S, Chiaraluce R, Consalvi V, Buchenau B, Giangiacomo L, Bossa F, Contestabile R
TitleCatalytic and thermodynamic properties of tetrahydromethanopterin-dependent serine hydroxymethyltransferase from Methanococcus jannaschii.
[44]
PubMed ID12773539
JournalJ Biol Chem
Year2003
Volume278
Pages31088-94
AuthorsFu TF, Boja ES, Safo MK, Schirch V
TitleRole of proline residues in the folding of serine hydroxymethyltransferase.
[45]
PubMed ID12514178
JournalJ Biol Chem
Year2003
Volume278
Pages10142-9
AuthorsZanetti KA, Stover PJ
TitlePyridoxal phosphate inhibits dynamic subunit interchange among serine hydroxymethyltransferase tetramers.
[46]
PubMed ID12438316
JournalJ Biol Chem
Year2003
Volume278
Pages2645-53
AuthorsFu TF, Scarsdale JN, Kazanina G, Schirch V, Wright HT
TitleLocation of the pteroylpolyglutamate-binding site on rabbit cytosolic serine hydroxymethyltransferase.
Related PDB1ls3
[47]
PubMed ID15170323
JournalBiochemistry
Year2004
Volume43
Pages6865-76
AuthorsSzebenyi DM, Musayev FN, di Salvo ML, Safo MK, Schirch V
TitleSerine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism.
Related PDB1rv3,1rv4,1rvu,1rvy
[48]
PubMed ID15273312
JournalProtein Sci
Year2004
Volume13
Pages2184-95
AuthorsBhatt AN, Khan MY, Bhakuni V
TitleThe C-terminal domain of dimeric serine hydroxymethyltransferase plays a key role in stabilization of the quaternary structure and cooperative unfolding of protein: domain swapping studies with enzymes having high sequence identity.
[49]
PubMed ID15865438
JournalBiochemistry
Year2005
Volume44
Pages6929-37
AuthorsBhavani S, Trivedi V, Jala VR, Subramanya HS, Kaul P, Prakash V, Appaji Rao N, Savithri HS
TitleRole of Lys-226 in the catalytic mechanism of Bacillus stearothermophilus serine hydroxymethyltransferase--crystal structure and kinetic studies.
Related PDB1yjs,1yjy,1yjz
[50]
PubMed ID17651438
JournalFEBS J
Year2007
Volume274
Pages4148-60
AuthorsRajaram V, Bhavani BS, Kaul P, Prakash V, Appaji Rao N, Savithri HS, Murthy MR
TitleStructure determination and biochemical studies on Bacillus stearothermophilus E53Q serine hydroxymethyltransferase and its complexes provide insights on function and enzyme memory.
Related PDB2vgt,2vgu,2vgv,2vgw

comments
This enzyme belongs to the type-I PLP-dependent enzyme superfamily (Aspartate aminotransferase superfamily, AAT; D00101 in EzCatDB).
There have been several possible catalytic mechanisms proposed for this enzyme (see [47]). Among these mechanisms, including the retro-aldol cleavage reaction (see [34], [38]) and the nucleophilic direct displacement reaction (see [38]), the concerted mechanism that combines the retro-aldol cleavage and the nucleophilic direct displacement reaction seems most likely (see [47], [50]).
This catalytic mechanism is composed of the following reactions:
(A) Formation of external aldimine (with amine group of L-Serine): Exchange of double-bonded atoms.
(B) SN1-like transfer of hydroxymethyl group from Ser-PLP to N5 of tetrahydrofolate (THF), forming a quinonoid intermediate of PLP-Gly (I00045) and a carbinolamine intermediate of THF (I00046).
(C) Elimination of hydroxyl group from the carbinolamine intermediate, forming an iminium cation intermediate of THF (I00047).
(D) Intramolecular addition of N10 to the carbon atom of the iminium cation.
(E or D') Isomerization (change in the position of double-bond), forming an external aldimine (Gly-PLP) from the quinonoid intermediate.
(F) Formation of internal aldimine, leading to the elimination of the product (Gly) from PLP: Exchange of double-bonded atoms.
These reactions proceed as follows:
(A) Formation of external aldimine (with amine group of L-Serine): Exchange of double-bonded atoms.
(A1) The negatively charged O3 atom of PLP modulates the pKa of the alpha-amino group of substrate, L-serine (Ser), and also the pKa of the internal aldimine with Lys229 (of 1dfo). Here, according to the literature from D00101 (D00101 [46], [59] & [61]), the imine-pyridine torsion (or strain) of PLP-Schiff base lowers pKa of the internal aldimine, without lowering pKa of the external aldimine. In any case, the difference in the pKa values facilitates the proton transfer from the alpha-amino group of Ser to the NZ nitrogen of Lys229. Moreover, the alpha-carboxylate of Ser may deprotonate the nucleophile, the alpha-amino group of Ser (see D00106 [10]).
(A2) The deprotonated amine group of Ser makes a nucleophilic attack on the C4' carbon of PLP, forming a transient geminal diamine intermediate.
(A3) There must be a general base, which deprotonates the amine group of the previously Ser substrate, so that the lone pair of the amine group can attack on the C4' atom to form a double-bond, and to release the amine of the catalytic residue, Lys229. Considering the active-site structure, Tyr55' (from the adjacent chain) may play the role as the general base, although the literature has not mentioned it (except for the literature from D00101 [11]). (The released Lys229 must be deprotonated, so that it can act as a general base at the final stage.) However, according to the active site structure of geminal diamine intermediate, the short distance between the NZ atom of Lys229 and amine group of the amino acid substrate suggests that a direct proton transfer can occur. Moreover, according to the literature [34], Thr226 stabilizes the unprotonated NZ atom of Lys229 (acting as a modulator).
(A4) The lone pair of the amine group (of Ser) makes a nucleophilic attack on the C4' atom to form a double-bond, releasing the amine of Lys229, leading to the formation of the external aldimine with L-Ser.
(B) Transfer of hydroxymethyl group from Ser-PLP to N5 of tetrahydrofolate (THF), forming a quinonoid intermediate of PLP-Gly (I00045) and a carbinolamine intermediate of THF (I00046).
(B1) Asp200 interacts with the N1 atom of PLP, modulating and enhancing the activity of the PLP cofactor as an electron sink, leading to polarization of the C2-C3 (or alpha-beta carbon atoms) bond, with positive charge accumulating on the C3 atom (see [47]; D00101 [17], [24]). The hydrogen-bond from Glu57 to O-gamma increases the charge on the C3 even further (Glu57 acting as a modulator?). Thus, the polarized C2-C3 bond is easily broken (see [47]).
(B2) A general base deprotonates the N5 atom of THF for its activation. (A water can be the weak base.)
(B3) The activated N5 atom makes a nucleophilic attack on the beta-carbon (or C3) atom of Ser-PLP, cleaving the C2-C3 bond to give a carbinolamine intermediate (I00046; THF-CH2OH) and a quinonoid intermediate of Gly-PLP (I00045). Asp200 may stabilize the quinonoid intermediate, through the interaction with the N1 atom of PLP (see D00271 [8]). This transfer reaction is an SN2-like reaction (see [47]).
(C) Elimination of hydroxyl group from the carbinolamine intermediate, forming an iminium cation intermediate of THF (I00047).
(C1) Glu57 acts as a general acid to protonate the hydroxyl group of the carbinolamine intermediate.
(C2) The hydroxyl group is eliminated from the intermediate to form a water molecule, forming a 5-iminium-THF (I00047).
(D) Intramolecular addition of N10 to the carbon atom of the iminium cation.
(D1) Glu57 acts as a general base to deprotonate the N10 atom (added group) of the iminium cation intermediate.
(D2) The activated the N10 atom makes a nucleophilic attack on the carbon atom of the iminium cation (addition site), forming a covalent bond with it.
(E or D') Isomerization (change in the position of double-bond), forming an external aldimine (Gly-PLP) from the quinonoid intermediate.
(E1) Although Tyr65' stabilizes the quinonoid intermediate (see [30]), it may act as a general acid to protonate the C2 atom of the quinonoid intermediate.
(E2) This reaction produces an external aldimine intermediate (I00044; Gly-PLP).
(F) Formation of internal aldimine, leading to the elimination of the product (Gly) from PLP: Exchange of double-bonded atoms.
(F1) Thr226 stabilizes the unprotonated NZ atom of Lys229 (acting as a modulator).
(F2) The deprotonated amine group of Lys229 makes a nucleophilic attack on the C4' carbon of the PLP of the external aldimine, forming a transient geminal diamine intermediate.
(F3) The lone pair of the amine nitrogen of Lys229 can attack on the C4' atom to form a double-bond, and to release the amine of the second product, Gly.
(F4) The negatively charged O3 atom of PLP modulates the pKa of the alpha-amino group of product, Gly, and also the pKa of the internal aldimine with Lys229. In any case, the difference in the pKa values facilitates the proton transfer from the NZ nitrogen of Lys229 to the alpha-amine group of Gly. The alpha-carboxylate of Gly may protonate the leaving group, the alpha-amino group of Gly (see D00106 [10]).

createdupdated
2004-11-252009-02-26


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2012 - March 2013)
Supported by the commission for the Development of Artificial Gene Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI) (October 2012 - )
© Biotechnology Research Institute for Drug Discovery, AIST, 2015-2016 All Rights Reserved.
© Computational Biology Research Center, AIST, 2004-2016 All Rights Reserved.