EzCatDB: D00105
Related links:    PDB-formatted query search system Fasta-formatted query search system Fasta-formatted query search system

DB codeD00105
RLCP classification6.30.97710.5300 : Double-bonded atom exchange
8.211.591510.5526 : Isomerization
6.20.85210.5511 : Double-bonded atom exchange
6.10.85210.5901 : Double-bonded atom exchange
8.211.591510.5527 : Isomerization
6.40.521010.5520 : Double-bonded atom exchange
CATH domainDomain 13.30.470.10 : D-amino Acid Aminotransferase; Chain A, domain 1Catalytic domain
Domain 23.20.10.10 : D-amino Acid Aminotransferase; Chain A, domain 2Catalytic domain
E.C.2.6.1.21
CSA1daa
MACiEM0066

CATH domainRelated DB codes (homologues)
3.20.10.10 : D-amino Acid Aminotransferase; Chain A, domain 2D00106
3.30.470.10 : D-amino Acid Aminotransferase; Chain A, domain 1D00106

Enzyme Name
UniProtKBKEGG

P19938
Protein nameD-alanine aminotransferaseD-amino-acid transaminase
D-aspartate transaminase
D-alanine aminotransferase
D-aspartic aminotransferase
D-alanine-D-glutamate transaminase
D-alanine transaminase
D-amino acid aminotransferase
SynonymsEC 2.6.1.21
D-amino acid aminotransferase
D-amino acid transaminase
DAAT
D-aspartate aminotransferase
PfamPF01063 (Aminotran_4)
[Graphical view]

KEGG pathways
MAP codePathways
MAP00310Lysine degradation
MAP00330Arginine and proline metabolism
MAP00360Phenylalanine metabolism
MAP00472D-Arginine and D-ornithine metabolism
MAP00473D-Alanine metabolism
MAP00550Peptidoglycan biosynthesis

UniProtKB:Accession NumberP19938
Entry nameDAAA_BACYM
ActivityD-alanine + 2-oxoglutarate = pyruvate + D- glutamate.
SubunitHomodimer.
Subcellular location
CofactorPyridoxal phosphate.

Compound table: links to PDB-related databases & PoSSuM

CofactorsSubstratesProductsintermediates
KEGG-idC00018C00133C00026C00022C00217I00029I00032I00030
C00647I00006I00033I00031
CompoundPyridoxal phosphateD-Alanine2-OxoglutaratePyruvateD-GlutamateExternal aldimine intermediate (initial stage:PLP-D-Ala)Quinonoid Intermediate-1 (PLP-Ala)Ketimine intermediate-1 (PLP-Ala)Tetrahedral intermediate from ketimine to PMP Pyridoxamine phosphate (PMP)Ketimine intermediate-2 (PLP-Glu)Quinonoid Intermediate-2 (PLP-Glu)External aldimine intermediate (final stage:PLP-D-Glu)
Typearomatic ring (with nitrogen atoms),phosphate group/phosphate ionamino acidscarbohydrate,carboxyl groupcarbohydrate,carboxyl groupamino acids,carboxyl group







ChEBI18405
15570
57416
30915
32816
15966








PubChem1051
7311725
71080
51
1060
23327








                     
1a0gA01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1a0gB01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1daaA01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1daaB01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1g2wA01UnboundUnboundUnboundAnalogue:ACTUnboundUnboundUnbound  Unbound   
1g2wB01UnboundUnboundUnboundAnalogue:ACTUnboundUnboundUnbound  Unbound   
2daaA01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
2daaB01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
2dabA01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
2dabB01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
3daaA01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
3daaB01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
4daaA01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
4daaB01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
5daaA01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
5daaB01UnboundUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1a0gA02Analogue:PMPUnboundUnboundUnboundUnboundUnboundUnbound  Intermediate-bound:PMP   
1a0gB02Analogue:PMPUnboundUnboundUnboundUnboundUnboundUnbound  Intermediate-bound:PMP   
1daaA02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1daaB02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1g2wA02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
1g2wB02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
2daaA02Analogue:DCSUnboundUnboundUnboundUnboundUnboundIntermediate-analogue:DCS  Unbound   
2daaB02Analogue:DCSUnboundUnboundUnboundUnboundUnboundIntermediate-analogue:DCS  Unbound   
2dabA02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
2dabB02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
3daaA02Analogue:PDDUnboundUnboundUnboundUnboundIntermediate-bound:PDDUnbound  Unbound   
3daaB02Analogue:PDDUnboundUnboundUnboundUnboundIntermediate-bound:PDDUnbound  Unbound   
4daaA02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
4daaB02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
5daaA02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   
5daaB02Bound:PLPUnboundUnboundUnboundUnboundUnboundUnbound  Unbound   

Active-site residues
resource
literature [8], [16], [19], [21]
pdbCatalytic residuesCofactor-binding residuescomment
           
1a0gA01TYR 31;HIS 100
 
 
1a0gB01TYR 31;HIS 100
 
 
1daaA01TYR 31;HIS 100
 
 
1daaB01TYR 31;HIS 100
 
 
1g2wA01TYR 31;HIS 100
 
 
1g2wB01TYR 31;HIS 100
 
 
2daaA01TYR 31;HIS 100
 
 
2daaB01TYR 31;HIS 100
 
 
2dabA01TYR 31;HIS 100
 
 
2dabB01TYR 31;HIS 100
 
 
3daaA01TYR 31;HIS 100
 
 
3daaB01TYR 31;HIS 100
 
 
4daaA01TYR 31;HIS 100
 
 
4daaB01TYR 31;HIS 100
 
 
5daaA01TYR 31;HIS 100
 
 
5daaB01TYR 31;HIS 100
 
 
1a0gA02LYS 145;GLU 177
LYS 145(PLP binding)
mutant L201A
1a0gB02LYS 145;GLU 177
LYS 145(PLP binding)
mutant L201A
1daaA02LYS 145;GLU 177
LYS 145(PLP binding)
 
1daaB02LYS 145;GLU 177
LYS 145(PLP binding)
 
1g2wA02LYS 145;       
LYS 145(PLP binding)
mutant E177S
1g2wB02       ;       
                    
mutant E177S, invisible 145
2daaA02LYS 145;GLU 177
LYS 145(PLP binding)
 
2daaB02LYS 145;GLU 177
LYS 145(PLP binding)
 
2dabA02LYS 145;GLU 177
LYS 145(PLP binding)
mutant L201A
2dabB02LYS 145;GLU 177
LYS 145(PLP binding)
mutant L201A
3daaA02LYS 145;GLU 177
LYS 145(PLP binding)
 
3daaB02LYS 145;GLU 177
LYS 145(PLP binding)
 
4daaA02LYS 145;GLU 177
LYS 145(PLP binding)
 
4daaB02LYS 145;GLU 177
LYS 145(PLP binding)
 
5daaA02LYS 145;       
LYS 145(PLP binding)
mutant E177K
5daaB02LYS 145;       
LYS 145(PLP binding)
mutant E177K

References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[8]Scheme I
[9]Fig.1, p.9661-9662, p.9666-9667
[13]Fig.1, Fig.2, p.181-182
[14]Fig.1
[16]Fig.1, Fig.8, p.4964
[17]Fig.1, p.765
[19]Fig.1, p.617-618
[20]Fig.1, Fig.3, p.696-697, p.698-699
[21]p.1330-1331
[22]Fig.3, Fig.10, p.143-149, p.155-156
[25]Fig.2, p.R5
[26]Fig.1, Fig.2, Fig.3, p.375-378
[27]Fig.1
[28]Fig.1

references
[1]
PubMed ID4950474
JournalAdv Enzymol Relat Areas Mol Biol
Year1971
Volume35
Pages79-134
AuthorsDunathan HC
TitleStereochemical aspects of pyridoxal phosphate catalysis.
[2]
PubMed ID2713327
JournalBiochemistry
Year1989
Volume28
Pages510-6
AuthorsMartinez del Pozo A, Merola M, Ueno H, Manning JM, Tanizawa K, Nishimura K, Asano S, Tanaka H, Soda K, Ringe D, et al
TitleActivity and spectroscopic properties of bacterial D-amino acid transaminase after multiple site-directed mutagenesis of a single tryptophan residue.
[3]
PubMed ID2496746
JournalBiochemistry
Year1989
Volume28
Pages505-9
AuthorsMerola M, Martinez del Pozo A, Ueno H, Recsei P, Di Donato A, Manning JM, Tanizawa K, Masu Y, Asano S, Tanaka H, et al
TitleSite-directed mutagenesis of the cysteinyl residues and the active-site serine residue of bacterial D-amino acid transaminase.
[4]
PubMed ID2914916
JournalJ Biol Chem
Year1989
Volume264
Pages2445-9
AuthorsTanizawa K, Masu Y, Asano S, Tanaka H, Soda K
TitleThermostable D-amino acid aminotransferase from a thermophilic Bacillus species. Purification, characterization, and active site sequence determination.
[5]
PubMed ID2125047
JournalJ Biol Chem
Year1990
Volume265
Pages22306-12
AuthorsFutaki S, Ueno H, Martinez del Pozo A, Pospischil MA, Manning JM, Ringe D, Stoddard B, Tanizawa K, Yoshimura T, Soda K
TitleSubstitution of glutamine for lysine at the pyridoxal phosphate binding site of bacterial D-amino acid transaminase. Effects of exogenous amines on the slow formation of intermediates.
[6]
PubMed ID1902115
JournalBiochemistry
Year1991
Volume30
Pages4072-7
AuthorsNishimura K, Tanizawa K, Yoshimura T, Esaki N, Futaki S, Manning JM, Soda K
TitleEffect of substitution of a lysyl residue that binds pyridoxal phosphate in thermostable D-amino acid aminotransferase by arginine and alanine.
[7]
PubMed ID1445909
JournalBiochemistry
Year1992
Volume31
Pages11748-54
AuthorsYoshimura T, Bhatia MB, Manning JM, Ringe D, Soda K
TitlePartial reactions of bacterial D-amino acid transaminase with asparagine substituted for the lysine that binds coenzyme pyridoxal 5'-phosphate.
[8]
PubMed ID8463224
JournalJ Biol Chem
Year1993
Volume268
Pages6932-8
AuthorsBhatia MB, Futaki S, Ueno H, Manning JM, Ringe D, Yoshimura T, Soda K
TitleKinetic and stereochemical comparison of wild-type and active-site K145Q mutant enzyme of bacterial D-amino acid transaminase.
[9]
CommentsX-RAY CRYSTALLOGRAPHY (1.94 ANGSTROMS)
Medline ID95352651
PubMed ID7626635
JournalBiochemistry
Year1995
Volume34
Pages9661-9
AuthorsSugio S, Petsko GA, Manning JM, Soda K, Ringe D
TitleCrystal structure of a D-amino acid aminotransferase: how the protein controls stereoselectivity.
Related PDB1daa
Related UniProtKBP19938
[10]
PubMed ID7592528
JournalJ Biochem (Tokyo)
Year1995
Volume117
Pages691-6
AuthorsKishimoto K, Yoshimura T, Esaki N, Sugio S, Manning JM, Soda K
TitleRole of leucine 201 of thermostable D-amino acid aminotransferase from a thermophile, Bacillus sp. YM-1.
[11]
PubMed ID8580849
JournalProtein Sci
Year1995
Volume4
Pages2578-86
AuthorsVan Ophem PW, Pospischil MA, Ringe D, Peisach D, Petsko G, Soda K, Manning JM
TitleCatalytic ability and stability of two recombinant mutants of D-amino acid transaminase involved in coenzyme binding.
[12]
PubMed ID8652553
JournalBiochemistry
Year1996
Volume35
Pages2112-6
AuthorsMartinez del Pozo A, van Ophem PW, Ringe D, Petsko G, Soda K, Manning JM
TitleInteraction of pyridoxal 5'-phosphate with tryptophan-139 at the subunit interface of dimeric D-amino acid transaminase.
[13]
PubMed ID9063963
JournalBiosci Biotechnol Biochem
Year1996
Volume60
Pages181-7
AuthorsYoshimura T, Jhee KH, Soda K
TitleStereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes.
[14]
PubMed ID9498563
JournalJ Biochem (Tokyo)
Year1997
Volume122
Pages1182-9
AuthorsKishimoto K, Yoshimura T, Soda K, Esaki N
TitleMutation of arginine 98, which serves as a substrate-recognition site of D-amino acid aminotransferase, can be partly compensated for by mutation of tyrosine 88 to an arginyl residue.
[15]
PubMed ID9163511
JournalJ Biochem (Tokyo)
Year1997
Volume121
Pages637-41
AuthorsOkada K, Hirotsu K, Sato M, Hayashi H, Kagamiyama H
TitleThree-dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 2.5 A resolution.
[16]
CommentsX-RAY CRYSTALLOGRAPHY (2.1 ANGSTROMS)
Medline ID98206914
PubMed ID9538014
JournalBiochemistry
Year1998
Volume37
Pages4958-67
AuthorsPeisach D, Chipman DM, Van Ophem PW, Manning JM, Ringe D
TitleCrystallographic study of steps along the reaction pathway of D-amino acid aminotransferase.
Related PDB2daa,3daa,4daa
Related UniProtKBP19938
[17]
PubMed ID9914259
JournalCurr Opin Struct Biol
Year1998
Volume8
Pages759-69
AuthorsJansonius JN
TitleStructure, evolution and action of vitamin B6-dependent enzymes.
[18]
PubMed ID9792912
JournalJ Biochem (Tokyo)
Year1998
Volume124
Pages905-10
AuthorsFuchikami Y, Yoshimura T, Gutierrez A, Soda K, Esaki N
TitleConstruction and properties of a fragmentary D-amino acid aminotransferase.
[19]
CommentsX-RAY CRYSTALLOGRAPHY (2.0 ANGSTROMS)
Medline ID98420361
PubMed ID9749913
JournalProtein Eng
Year1998
Volume11
Pages613-9
AuthorsSugio S, Kashima A, Kishimoto K, Peisach D, Petsko GA, Ringe D, Yoshimura T, Esaki N
TitleCrystal structures of L201A mutant of D-amino acid aminotransferase at 2.0 A resolution: implication of the structural role of Leu201 in transamination.
Related PDB1a0g,2dab
Related UniProtKBP19938
[20]
JournalJ Microbiol Biotechnol
Year1999
Volume9
Pages695-703
AuthorsJhee KH, Yoshimura T, Kurokawa Y, Esaki N, Soda K
TitleA stereochemical aspect of pyridoxal 5 '-phosphate dependent enzyme reactions and molecular evolution.
[21]
CommentsX-ray crystallography
PubMed ID9930994
JournalBiochemistry
Year1999
Volume38
Pages1323-31
Authorsvan Ophem PW, Peisach D, Erickson SD, Soda K, Ringe D, Manning JM
TitleEffects of the E177K mutation in D-amino acid transaminase. Studies on an essential coenzyme anchoring group that contributes to stereochemical fidelity.
Related PDB5daa
[22]
PubMed ID10800595
JournalAdv Enzymol Relat Areas Mol Biol
Year2000
Volume74
Pages129-84
AuthorsMehta PK, Christen P
TitleThe molecular evolution of pyridoxal-5'-phosphate-dependent enzymes.
[23]
PubMed ID10630999
JournalBiochemistry
Year2000
Volume39
Pages381-7
AuthorsKishimoto K, Yasuda C, Manning JM
TitleReversible dissociation/association of D-amino acid transaminase subunits: properties of isolated active dimers and inactive monomers.
[24]
PubMed ID11106434
JournalEur J Biochem
Year2000
Volume267
Pages7218-23
AuthorsGutierrez A, Yoshimura T, Fuchikami Y, Esaki N
TitleModulation of activity and substrate specificity by modifying the backbone length of the distant interdomain loop of D-amino acid aminotransferase.
[25]
PubMed ID10673430
JournalStructure Fold Des
Year2000
Volume8
PagesR1-6
AuthorsSchneider G, Kack H, Lindqvist Y
TitleThe manifold of vitamin B6 dependent enzymes.
[26]
PubMed ID11933244
JournalChem Rec
Year2001
Volume1
Pages373-84
AuthorsSoda K, Yoshimura T, Esaki N
TitleStereospecificity for the hydrogen transfer of pyridoxal enzyme reactions.
[27]
PubMed ID11642362
JournalProg Nucleic Acid Res Mol Biol
Year2001
Volume70
Pages175-206
AuthorsHutson S
TitleStructure and function of branched chain aminotransferases.
[28]
PubMed ID12297014
JournalJ Biochem Mol Biol
Year2002
Volume35
Pages306-12
AuthorsRo HS
TitleEffects of salts on the conformation and catalytic properties of d-amino acid aminotransferase.

comments
This enzyme belongs to the fold-type IV pyridoxal-phosphate-dependent enzymes (see [17]).
Unlike other PLP-dependent aminotransferases (D00101, D00102 in EzCatDB), the catalytic lysine (Lus145) of this enzyme transfer the pro-R hydrogen at the C4' position of pyridoxal phosphate (PLP) on the re face (see [9], [13]). However, the catalytic residues surrounding PLP of this enzyme is very similar to that of aspartate aminotransferase (D00101 in EzCatDB), according to the literature [15].
This enzyme catalyzes transamination, which is composed of the following reactions (see [16]):
(A) Formation of external aldimine (with amine group of D-alanine).
(B) Isomerization (change in the position of double-bond), forming a ketimine intermediate.
(C) Schiff-base deforming by hydration, releasing the first product, pyruvate, and PMP.
(D) Schiff-base forming of PMP with carbonyl group of the second substrate, 2-oxoglutarate, leaging again to a ketimine intermediate.
(E) Isomerization (change in the position of double-bond).
(F) Formation of internal aldimine, leading to the elimination of the product, D-glutamate, from PLP.
These reactions proceed in the following way:
(A) Formation of external aldimine (with amine group of D-alanine).
(A1) Tyr31 might interact with O3' atom of PLP through a water together with the imine nitrogen of Lys145, when the PLP-aldimine is protonated, modulating and keeping the O3' of PLP negatively charged (see [15], [16]).
(A2) The negatively charged O3' atom of PLP modulates the pKa of the internal aldimine with Lys145 (see [16]).
(A3) The deprotonated amine group of D-alanine makes a nucleophilic attack on the C4' carbon of PLP, forming a transient geminal diamine intermediate (see [16]).
(A4) There must be a general base, which deprotonates the amine group of the previously D-alanine substrate, so that the lone pair of the amine group can attack on the C4' atom to form a double-bond, and to release the amine of the catalytic residue, Lys145. The adjacent Lys145 nitrogen may act as a general base to deprotonate the amine group of the incoming substrate, through a water molecule. (see [16])
(A5) The reaction produces the external aldimine with D-alanine.
(B) Isomerization (change in the position of double-bond), forming a ketimine intermediate.
(B1) Glu177 interacts with the N1 atom of PLP, keeping the protonated state of the pyridinium nitrogen of PLP, so that it can modulate and enhance the activity of the PLP cofactor as an electron sink, which facilitates the abstraction of alpha-proton from the D-alanine covalently bound to the PLP (see [16] & [21]). At the same time, Tyr31 seems to modulate the pKa of Lys145 sidechain, whereas the O3' atom of PLP interacts with the Schiff-base nitrogen atom, modulating its pKa (see [16]).
(B2) Lys145 acts as a general base to deprotonate the alpha-proton of the amino acid substrate, forming a quinonoid intermediate.
(B3) Lys145 acts as a general acid to protonate the C4' atom of the PLP, leading to the formation of a ketimine intermediate.
(C) Schiff-base deforming by hydration, releasing the first product, pyruvate, and PMP.
(C0) Considering the active site of enzyme (PDB;2daa), a water molecule is unlikely to approach from the side of the active site residues, Tyr31 and Lys145.
(C1) Thus, His100* from the adjacent subunit might act as a general base to activate the water molecule at the si-face side of cofactor.
(C2) The activated water molecule makes a nucleophilic attack on the alpha-carbon atom of the substrate (from the si-face side), forming a carbinolamine intermediate.
(C3) The protonated His100* might transfer the proton to Lys145, through a water molecule and either O3' atom of PLP or Tyr31.
(C4) Lys145 may act as a general acid to protonate the N4' atom of the PLP. Tyr31 may modulate the activity of Lys145.
(C5) The lone pair of the hydroxyl oxygen makes a nucleophilic attack on the C4' atom, whereas His100* acts as a general base to deprotonate the hydroxyl group.
(C6) The protonated His100* might transfer the proton to Lys145, through a water molecule and either O3' atom of PLP or Tyr31. Finally, Lys145 act as a general acid to protonate the N4' atom, releasing the first product, pyruvate and the PMP.
(D) Schiff-base forming of PMP with carbonyl group of the second substrate, 2-oxoglutarate.
(D0) The second substrate, 2-oxoglutarate, is bound to the active site, with the carbonyl oxygen hydrogen-bonded by His100*.
(D1) Lys145 acts as a general base to deprotonate the amine group (or the N4' atom) of PMP.
(D2) The deprotonated amine group (or the N4' atom) of PMP makes a nucleophilic attack on the carbonyl carbon of the substrate, whereas His100* acts as a general acid to protonate the carbonyl oxygen, forming a carbinolamine intermediate.
(D3) The protonated Lys145 might transfer the proton to His100*, through a water molecule and either O3' atom of PLP or Tyr31.
(D4) Lys145 acts as a general base to deprotonate the N4' amine group. Tyr31 may modulate the activity of Lys258.
(D5) The lone pair of the N4' nitrogen atom makes a nucleophilic attack on the carbon atom, whereas His100* acts as a general acid to the hydroxyl group of the carbinolamine intermediate, leading to the cleavage between the carbon and the N4' atom, and to the release of a water moleucle. This reaction gives a ketimine intermediate again.
(E) Isomerization (change in the position of double-bond).
(E1) Glu177 modulates and enhances the activity of the PLP cofactor as an electron sink, which facilitates the abstraction of alpha-proton from the C4' atom of the PLP. At the same time, Tyr31 seems to modulate the pKa of Lys145 sidechain, whereas the O3' atom of PLP interacts with the Schiff-base nitrogen atom, modulating the pKa (see [16]).
(E2) Lys145 acts as a general base to deprotonate the C4' atom of the PLP, leading to the formation of a quinonoid intermediate.
(E3) Lys145 acts as a general acid to protonate the alpha-proton of the amino acid substrate, forming an external aldimine. (As a result, Lys145 must be deprotonated, so that it can act as a general base at the next stage.)
(F) Formation of internal aldimine, leading to the elimination of the product, D-glutamate, from PLP.
(F1) Tyr31 might interact with O3' atom of PLP through a water , when the PLP-aldimine is protonated, modulating and keeping the O3' of PLP negatively charged (see [15], [16]).
(F2) The negatively charged O3' atom of PLP modulates the pKa of the internal aldimine with Lys145 (see [16]).
(F3) The deprotonated amine group of Lys145 makes a nucleophilic attack on the C4' carbon of the PLP of the external aldimine, forming a transient geminal diamine intermediate.
(F4) There must be a general acid, which protonates the N4' nitrogen atom of the external aldimine or the geminal diamine. Considering the active-site structure, The adjacent Lys145 nitrogen may play the role as the general acid to protonate the N4' atom, through a water.
(F5) The lone pair of the amine nitrogen of Lys145 can attack on the C4' atom to form a double-bond, and to release the amine of the second product, D-glutamate.

createdupdated
2004-03-182009-02-26


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2012 - March 2013)
Supported by the commission for the Development of Artificial Gene Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI) (October 2012 - )
© Biotechnology Research Institute for Drug Discovery, AIST, 2015-2016 All Rights Reserved.
© Computational Biology Research Center, AIST, 2004-2016 All Rights Reserved.