EzCatDB: M00151
Related links:    PDB-formatted query search system Fasta-formatted query search system Fasta-formatted query search system

DB codeM00151
CATH domainDomain 11.10.620.20 : Ribonucleotide Reductase, subunit ACatalytic domain
Domain 21.10.620.20 : Ribonucleotide Reductase, subunit A
Domain 31.20.1280.10 : Monooxygenase
Domain 41.20.1280.30 : Monooxygenase
E.C.1.14.13.25
CSA1mhy

CATH domainRelated DB codes (homologues)
1.10.620.20 : Ribonucleotide Reductase, subunit AS00028,M00204,M00205

Enzyme Name
UniProtKBKEGG

P22869P27353P18798P27354P11987P27355
Protein nameMethane monooxygenase component A alpha chainMethane monooxygenase component A alpha chainMethane monooxygenase component A beta chainMethane monooxygenase component A beta chainMethane monooxygenase component A gamma chainMethane monooxygenase component A gamma chainmethane monooxygenase
methane hydroxylase
SynonymsEC 1.14.13.25
Methane hydroxylase
EC 1.14.13.25
Methane hydroxylase
EC 1.14.13.25
Methane hydroxylase
EC 1.14.13.25
Methane hydroxylase
EC 1.14.13.25
Methane hydroxylase
EC 1.14.13.25
Methane hydroxylase
RefSeqYP_113659.1 (Protein)
NC_002977.6 (DNA/RNA sequence)

YP_113660.1 (Protein)
NC_002977.6 (DNA/RNA sequence)

YP_113663.1 (Protein)
NC_002977.6 (DNA/RNA sequence)

PfamPF02332 (Phenol_Hydrox)
[Graphical view]
PF02332 (Phenol_Hydrox)
[Graphical view]
PF02332 (Phenol_Hydrox)
[Graphical view]
PF02332 (Phenol_Hydrox)
[Graphical view]
PF02964 (MeMO_Hyd_G)
[Graphical view]
PF02964 (MeMO_Hyd_G)
[Graphical view]

KEGG pathways
MAP codePathways
MAP00680Methane metabolism

UniProtKB:Accession NumberP22869P27353P18798P27354P11987P27355
Entry nameMEMA_METCAMEMA_METTRMEMB_METCAMEMB_METTRMEMG_METCAMEMG_METTR
ActivityMethane + NAD(P)H + O(2) = methanol + NAD(P)(+) + H(2)O.Methane + NAD(P)H + O(2) = methanol + NAD(P)(+) + H(2)O.Methane + NAD(P)H + O(2) = methanol + NAD(P)(+) + H(2)O.Methane + NAD(P)H + O(2) = methanol + NAD(P)(+) + H(2)O.Methane + NAD(P)H + O(2) = methanol + NAD(P)(+) + H(2)O.Methane + NAD(P)H + O(2) = methanol + NAD(P)(+) + H(2)O.
SubunitM.capsulatus has two forms of methane monooxygenase, a soluble and a membrane-bound type. The soluble type consists of four components (A to D): protein A, comprising three chains, in an alpha-2, beta-2, gamma-2 configuration, is a nonheme iron protein containing an unusual mu-hydroxo bridge structure at its active site and interacts with both oxygen and methane.M.trichosporium has two forms of methane monooxygenase, a soluble and a membrane-bound type. The soluble type consists of four components (A to D): protein A, comprising three chains, in an alpha-2, beta-2, gamma-2 configuration, is a nonheme iron protein containing an unusual mu-hydroxo bridge structure at its active site and interacts with both oxygen and methane.M.capsulatus has two forms of methane monooxygenase, a soluble and a membrane-bound type. The soluble type consists of four components (A to D): protein A, comprising three chains, in an alpha-2, beta-2, gamma-2 configuration, is a nonheme iron protein containing an unusual mu-hydroxo bridge structure at its active site and interacts with both oxygen and methane.M.trichosporium has two forms of methane monooxygenase, a soluble and a membrane-bound type. The soluble type consists of four components (A to D): protein A, comprising three chains, in an alpha-2, beta-2, gamma-2 configuration, is a nonheme iron protein containing an unusual mu-hydroxo bridge structure at its active site and interacts with both oxygen and methane.M.capsulatus has two forms of methane monooxygenase, a soluble and a membrane-bound type. The soluble type consists of four components (A to D): protein A, comprising three chains, in an alpha-2, beta-2, gamma-2 configuration, is a nonheme iron protein containing an unusual mu-hydroxo bridge structure at its active site and interacts with both oxygen and methane.M.trichosporium has two forms of methane monooxygenase, a soluble and a membrane-bound type. The soluble type consists of four components (A to D): protein A, comprising three chains, in an alpha-2, beta-2, gamma-2 configuration, is a nonheme iron protein containing an unusual mu-hydroxo bridge structure at its active site and interacts with both oxygen and methane.
Subcellular location





CofactorBinds 2 iron ions.Binds 2 iron ions.




Compound table: links to PDB-related databases & PoSSuM

CofactorsSubstratesProducts
KEGG-idC00023C01438C00007C00080C00005C00004C00132C00001C00006C00003
CompoundIronMethaneO2H+NADPHNADHMethanolH2ONADP+NAD+
Typeheavy metalothersothersothersamide group,amine group,nucleotideamide group,amine group,nucleotidecarbohydrateH2Oamide group,amine group,nucleotideamide group,amine group,nucleotide
ChEBI18248
82664
16183
27140
26689
15379
15378
16474
16908
17790
15377
18009
15846
PubChem23925
297
977
1038
5884
439153
887
962
22247451
5886
5893
                  
1fyzABound:2xFE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fyzBBound:2xFE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0ABound:2xFE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0BBound:2xFE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz1ABound:2x_FEUnboundUnbound UnboundUnboundAnalogue:FMT UnboundUnbound
1fz1BBound:2x_FEUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2ABound:2xFE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2BBound:2xFE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz3ABound:2x_FEUnboundUnbound UnboundUnboundAnalogue:FMT UnboundUnbound
1fz3BBound:2x_FEUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz4ABound:2x_FEUnboundUnbound UnboundUnboundAnalogue:FMT UnboundUnbound
1fz4BBound:2x_FEUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5ABound:FE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5BBound:FE2UnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz7ABound:2x_FEUnboundUnbound UnboundUnboundAnalogue:FMT UnboundUnbound
1fz7BBound:2x_FEUnboundUnbound UnboundUnboundAnalogue:EOH UnboundUnbound
1mhyDBound:2x_FEUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mhzDBound:2x_FEUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mmoDBound:2x_FEUnboundUnbound UnboundUnboundAnalogue:ACY UnboundUnbound
1mmoEBound:2x_FEUnboundUnbound UnboundUnboundAnalogue:ACY UnboundUnbound
1mtyDBound:2x_FEUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mtyEBound:2x_FEUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fyzCUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fyzDUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0CUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0DUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz1CUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz1DUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2CUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2DUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz3CUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz3DUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz4CUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz4DUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5CUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5DUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz7CUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz7DUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mhyBUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mhzBUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mmoBUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mmoCUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mtyBUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mtyCUnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fyzE01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fyzF01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0E01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0F01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz1E01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz1F01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2E01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2F01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz3E01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz3F01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz4E01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz4F01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5E01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5F01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz7E01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz7F01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mhyG01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mhzG01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mmoG01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mmoH01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mtyG01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mtyH01UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fyzE02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fyzF02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0E02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz0F02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz1E02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz1F02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2E02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz2F02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz3E02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz3F02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz4E02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz4F02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5E02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz5F02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz7E02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1fz7F02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mhyG02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mhzG02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mmoG02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mmoH02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mtyG02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound
1mtyH02UnboundUnboundUnbound UnboundUnboundUnbound UnboundUnbound

Active-site residues
resource
Swiss-prot;P22869, P27353 & literature [3], [7] & [8]
pdbCatalytic residuesCofactor-binding residues
          
1fyzACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fyzBCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz0ACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz0BCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz1ACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz1BCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz2ACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz2BCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz3ACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz3BCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz4ACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz4BCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz5ACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz5BCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz7ACYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fz7BCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1mhyDCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1mhzDCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1mmoDCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1mmoECYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1mtyDCYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1mtyECYS 151;THR 213
GLU 114;GLU 144;HIS 147(Iron-1 binding);GLU 209;GLU 243;HIS 246(Iron-2 binding)
1fyzC 
 
1fyzD 
 
1fz0C 
 
1fz0D 
 
1fz1C 
 
1fz1D 
 
1fz2C 
 
1fz2D 
 
1fz3C 
 
1fz3D 
 
1fz4C 
 
1fz4D 
 
1fz5C 
 
1fz5D 
 
1fz7C 
 
1fz7D 
 
1mhyB 
 
1mhzB 
 
1mmoB 
 
1mmoC 
 
1mtyB 
 
1mtyC 
 
1fyzE01 
 
1fyzF01 
 
1fz0E01 
 
1fz0F01 
 
1fz1E01 
 
1fz1F01 
 
1fz2E01 
 
1fz2F01 
 
1fz3E01 
 
1fz3F01 
 
1fz4E01 
 
1fz4F01 
 
1fz5E01 
 
1fz5F01 
 
1fz7E01 
 
1fz7F01 
 
1mhyG01 
 
1mhzG01 
 
1mmoG01 
 
1mmoH01 
 
1mtyG01 
 
1mtyH01 
 
1fyzE02 
 
1fyzF02 
 
1fz0E02 
 
1fz0F02 
 
1fz1E02 
 
1fz1F02 
 
1fz2E02 
 
1fz2F02 
 
1fz3E02 
 
1fz3F02 
 
1fz4E02 
 
1fz4F02 
 
1fz5E02 
 
1fz5F02 
 
1fz7E02 
 
1fz7F02 
 
1mhyG02 
 
1mhzG02 
 
1mmoG02 
 
1mmoH02 
 
1mtyG02 
 
1mtyH02 
 

References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[3]Fig.3
[4]SCHEME 1, p.175964
[6]SCHEME 1, SCHEME 26
[7]p.541
[8]Fig.6, p.412-416
[10]Fig.1,p.65-675
[11]Fig.1, Fig.8, p.5232-52337
[13]Fig.1, p.560-5627
[14]p.143-147
[15]Scheme 14
[18]Scheme 2, Scheme 44
[19]Scheme 4, p.4430-44313
[21]Fig.5, p.10774-10776
[23]Scheme 17
[24]Fig.24
[25]Fig.1, p.285
[25]Scheme 24
[26]Scheme 17
[28]p.831-835
[29]p.1795
[37]Fig.7, p.71-73

references
[1]
PubMed ID2840063
JournalBiochem Biophys Res Commun
Year1988
Volume154
Pages165-70
AuthorsFox BG, Lipscomb JD
TitlePurification of a high specific activity methane monooxygenase hydroxylase component from a type II methanotroph.
[2]
PubMed ID2542319
JournalJ Biol Chem
Year1989
Volume264
Pages10023-33
AuthorsFox BG, Froland WA, Dege JE, Lipscomb JD
TitleMethane monooxygenase from Methylosinus trichosporium OB3b. Purification and properties of a three-component system with high specific activity from a type II methanotroph.
[3]
PubMed ID1644180
JournalFEBS Lett
Year1992
Volume307
Pages257-62
AuthorsNordlund P, Dalton H, Eklund H
TitleThe active site structure of methane monooxygenase is closely related to the binuclear iron center of ribonucleotide reductase.
[4]
PubMed ID1325441
JournalJ Biol Chem
Year1992
Volume267
Pages17588-97
AuthorsFroland WA, Andersson KK, Lee SK, Liu Y, Lipscomb JD
TitleMethane monooxygenase component B and reductase alter the regioselectivity of the hydroxylase component-catalyzed reactions. A novel role for protein-protein interactions in an oxygenase mechanism.
[5]
PubMed ID8223558
JournalEur J Biochem
Year1993
Volume217
Pages217-23
AuthorsAtta M, Fontecave M, Wilkins PC, Dalton H
TitleAbduction of iron(III) from the soluble methane monooxygenase hydroxylase and reconstitution of the binuclear site with iron and manganese.
[6]
PubMed ID8408008
JournalJ Biol Chem
Year1993
Volume268
Pages21569-77
AuthorsLee SK, Nesheim JC, Lipscomb JD
TitleTransient intermediates of the methane monooxygenase catalytic cycle.
[7]
CommentsX-RAY CRYSTALLOGRAPHY (2.2 ANGSTROMS).
Medline ID94077176
PubMed ID8255292
JournalNature
Year1993
Volume366
Pages537-43
AuthorsRosenzweig AC, Frederick CA, Lippard SJ, Nordlund P
TitleCrystal structure of a bacterial non-haem iron hydroxylase that catalyses the biological oxidation of methane.
Related PDB1mmo
Related UniProtKBP22869,P18798,P11987
[8]
CommentsX-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS).
Medline ID98092034
PubMed ID9432288
JournalChem Biol
Year1995
Volume2
Pages409-18
AuthorsRosenzweig AC, Nordlund P, Takahara PM, Frederick CA, Lippard SJ
TitleGeometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states.
Related UniProtKBP22869
[9]
JournalJ Inorg Biochem
Year1995
Volume58
Pages235-44
AuthorsSemrau JD, Zolandz D, Lidstrom ME, Chan SI
TitleThe role of copper in the pMMO of Methylococcus capsulatus bath: a structural vs. catalytic function.
[10]
PubMed ID9056845
JournalBiochem Soc Trans
Year1997
Volume25
Pages65-9
AuthorsFontecave M, Menage S, Duboc-Toia C, Vincent JM, Lambeaux C
TitleModel complexes of di-iron sites in methane mono-oxygenase and ribonucleotide reductase: structure and reactivity.
[11]
PubMed ID9136884
JournalBiochemistry
Year1997
Volume36
Pages5223-33
AuthorsLiu Y, Nesheim JC, Paulsen KE, Stankovich MT, Lipscomb JD
TitleRoles of the methane monooxygenase reductase component in the regulation of catalysis.
[12]
PubMed ID9054392
JournalJ Biol Chem
Year1997
Volume272
Pages7022-6
AuthorsDavydov A, Davydov R, Graslund A, Lipscomb JD, Andersson KK
TitleRadiolytic reduction of methane monooxygenase dinuclear iron cluster at 77 K.@EPR evidence for conformational change upon reduction or binding of component B to the diferric state.
[13]
CommentsX-ray crystallography
PubMed ID9070438
JournalProtein Sci
Year1997
Volume6
Pages556-68
AuthorsElango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, Ohlendorf DH
TitleCrystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b.
Related PDB1mhy,1mhz
[14]
CommentsX-RAY CRYSTALLOGRAPHY (1.7 ANGSTROMS).
Medline ID97469634
PubMed ID9329079
JournalProteins
Year1997
Volume29
Pages141-52
AuthorsRosenzweig AC, Brandstetter H, Whittington DA, Nordlund P, Lippard SJ, Frederick CA
TitleCrystal structures of the methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): implications for substrate gating and component interactions.
Related PDB1mty
Related UniProtKBP22869
[15]
PubMed ID8999792
JournalScience
Year1997
Volume275
Pages515-8
AuthorsShu L, Nesheim JC, Kauffmann K, Munck E, Lipscomb JD, Que L Jr
TitleAn Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase.
[16]
PubMed ID10231531
JournalBiochemistry
Year1999
Volume38
Pages5799-812
AuthorsChang SL, Wallar BJ, Lipscomb JD, Mayo KH
TitleSolution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling.
[17]
PubMed ID10346895
JournalBiochemistry
Year1999
Volume38
Pages6752-60
AuthorsGallagher SC, Callaghan AJ, Zhao J, Dalton H, Trewhella J
TitleGlobal conformational changes control the reactivity of methane monooxygenase.
[18]
PubMed ID10504247
JournalBiochemistry
Year1999
Volume38
Pages12768-85
AuthorsGassner GT, Lippard SJ
TitleComponent interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath).
[19]
PubMed ID10194363
JournalBiochemistry
Year1999
Volume38
Pages4423-32
AuthorsLee SK, Lipscomb JD
TitleOxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the O-O bond cleavage steps.
[20]
PubMed ID10381404
JournalChem Biol
Year1999
Volume6
Pages441-9
AuthorsBrandstetter H, Whittington DA, Lippard SJ, Frederick CA
TitleMutational and structural analyses of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath).
[21]
PubMed ID10196150
JournalJ Biol Chem
Year1999
Volume274
Pages10771-6
AuthorsValentine AM, LeTadic-Biadatti MH, Toy PH, Newcomb M, Lippard SJ
TitleOxidation of ultrafast radical clock substrate probes by the soluble methane monooxygenase from Methylococcus capsulatus (Bath).
[22]
PubMed ID10393915
JournalProc Natl Acad Sci U S A
Year1999
Volume96
Pages7877-82
AuthorsWalters KJ, Gassner GT, Lippard SJ, Wagner G
TitleStructure of the soluble methane monooxygenase regulatory protein B.
[23]
PubMed ID11063587
JournalBiochemistry
Year2000
Volume39
Pages13503-15
AuthorsBrazeau BJ, Lipscomb JD
TitleKinetics and activation thermodynamics of methane monooxygenase compound Q formation and reaction with substrates.
[24]
PubMed ID10742188
JournalCurr Opin Chem Biol
Year2000
Volume4
Pages235-41
AuthorsWesterheide L, Pascaly M, Krebs B
TitleMethane monooxygenase and its related biomimetic models.
[25]
PubMed ID10714702
JournalJ Inorg Biochem
Year2000
Volume78
Pages23-34
AuthorsYoshizawa K
TitleTwo-step concerted mechanism for methane hydroxylation on the diiron active site of soluble methane monooxygenase.
[26]
PubMed ID11329291
JournalBiochemistry
Year2001
Volume40
Pages2220-33
AuthorsWallar BJ, Lipscomb JD
TitleMethane monooxygenase component B mutants alter the kinetics of steps throughout the catalytic cycle.
[27]
PubMed ID11459514
JournalJ Am Chem Soc
Year2001
Volume123
Pages7194-5
AuthorsWhite MC, Doyle AG, Jacobsen EN
TitleA synthetically useful, self-assembling MMO mimic system for catalytic alkene epoxidation with aqueous H2O2.
[28]
CommentsX-RAY CRYSTALLOGRAPHY (1.96 ANGSTROMS).
Medline ID21350666
PubMed ID11456616
JournalJ Am Chem Soc
Year2001
Volume123
Pages827-38
AuthorsWhittington DA, Lippard SJ
TitleCrystal structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath) demonstrating geometrical variability at the dinuclear iron active site.
Related PDB1fyz,1fz0,1fz1,1fz2,1fz3,1fz4,1fz5
Related UniProtKBP22869
[29]
CommentsX-ray crystallography
PubMed ID11456795
JournalJ Am Chem Soc
Year2001
Volume123
Pages1794-5
AuthorsWhittington DA, Sazinsky MH, Lippard SJ
TitleX-ray crystal structure of alcohol products bound at the active site of soluble methane monooxygenase hydroxylase.
Related PDB1fz7
[30]
PubMed ID11851404
JournalBiochemistry
Year2002
Volume41
Pages2571-9
AuthorsBalendra S, Lesieur C, Smith TJ, Dalton H
TitlePositively charged amino acids are essential for electron transfer and protein-protein interactions in the soluble methane monooxygenase complex from Methylococcus capsulatus (Bath).
[31]
PubMed ID11772001
JournalBiochemistry
Year2002
Volume41
Pages42-51
AuthorsMuller J, Lugovskoy AA, Wagner G, Lippard SJ
TitleNMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase.
[32]
PubMed ID11952785
JournalEur J Biochem
Year2002
Volume269
Pages1835-43
AuthorsCallaghan AJ, Smith TJ, Slade SE, Dalton H
TitleResidues near the N-terminus of protein B control autocatalytic proteolysis and the activity of soluble methane mono-oxygenase.
[33]
PubMed ID11849083
JournalInorg Chem
Year2002
Volume41
Pages827-37
AuthorsLee D, Lippard SJ
TitleSynthetic analogue of the [Fe(2)(mu-OH)(2)(mu-O(2)CR)](3+) core of soluble methane monooxygenase hydroxylase via synthesis and dioxygen reactivity of carboxylate-bridged diiron(II) complexes.
[34]
PubMed ID11942853
JournalJ Am Chem Soc
Year2002
Volume124
Pages4135-48
AuthorsMusaev DG, Basch H, Morokuma K
TitleTheoretical study of the mechanism of alkane hydroxylation and ethylene epoxidation reactions catalyzed by diiron bis-oxo complexes. The effect of substrate molecules.
[35]
PubMed ID12059209
JournalJ Am Chem Soc
Year2002
Volume124
Pages6879-86
AuthorsNewcomb M, Shen R, Lu Y, Coon MJ, Hollenberg PF, Kopp DA, Lippard SJ
TitleEvaluation of norcarane as a probe for radicals in cytochome p450- and soluble methane monooxygenase-catalyzed hydroxylation reactions.
[36]
PubMed ID11890772
JournalJ Am Chem Soc
Year2002
Volume124
Pages2416-7
AuthorsTshuva EY, Lee D, Bu W, Lippard SJ
TitleCatalytic oxidation by a carboxylate-bridged non-heme diiron complex.
[37]
PubMed ID11913390
JournalJ Comput Chem
Year2002
Volume23
Pages59-76
AuthorsTorrent M, Musaev DG, Basch H, Morokuma K
TitleComputational studies of reaction mechanisms of methane monooxygenase and ribonucleotide reductase.

comments
This enzyme, methane monooxygenase (MMO; EC 1.14.13.25), is made up of three components, component A (MMO hydroxylase, MMOH), component B (MMOB: Swiss-prot, P27356), and component C (MMO reductase, MMOR: Swiss-prot, P22868, Q53563).
Whilst the component B (MMOB) is a regulatory unit of this enzyme by interacting with alpha chains of the component A, the component C (MMOR) transfers two electron from NADH to the component A, with FAD and [2Fe-2S] cluster.
This entry corresponds to the component A (MMOH). The component A (MMOH) consists of two alpha chains (Swiss-prot, P22869, P27353) with the binuclear iron center, two beta chains (Swiss-prot, P18798, P27354) and two gamma chains (Swiss-prot, P11987, P27355).
This enzyme catalyzes the following reactions:
(A) Oxygenation of methane (CH4) by O2, giving methanol (CH3OH) and water (H2O) at dinuclear iron site:
(B) Reduction of dinuclear iron site by NAD(P)H:

createdupdated
2004-07-292009-02-26


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2012 - March 2013)
Supported by the commission for the Development of Artificial Gene Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI) (October 2012 - )
© Biotechnology Research Institute for Drug Discovery, AIST, 2015-2016 All Rights Reserved.
© Computational Biology Research Center, AIST, 2004-2016 All Rights Reserved.