EzCatDB: M00178
Related links:    PDB-formatted query search system Fasta-formatted query search system Fasta-formatted query search system

DB codeM00178
RLCP classification3.113.90000.397 : Transfer
3.1103.6090.130 : Transfer
CATH domainDomain 12.40.240.10 : Ribosomal Protein L25; Chain P
Domain 22.40.240.10 : Ribosomal Protein L25; Chain P
Domain 31.10.1160.10 : Glutamyl-tRNA Synthetase; domain 2Catalytic domain
Domain 43.90.800.10 : Glutamyl-tRNA Synthetase; domain 3
Domain 53.40.50.620 : Rossmann foldCatalytic domain
E.C.6.1.1.18
CSA1euy

CATH domainRelated DB codes (homologues)
3.40.50.620 : Rossmann foldS00314,S00549,S00316,S00317,S00318,S00315,T00085,T00249,D00300,M00177,T00106,T00114

Enzyme Name
UniProtKBKEGG

P00962
Protein nameGlutaminyl-tRNA synthetaseglutamine---tRNA ligase
glutaminyl-tRNA synthetase
glutaminyl-transfer RNA synthetase
glutaminyl-transfer ribonucleate synthetase
glutamine-tRNA synthetase
glutamine translase
glutamate-tRNA ligase
glutaminyl ribonucleic acid
GlnRS
SynonymsEC 6.1.1.18
Glutamine--tRNA ligase
GlnRS
RefSeqNP_415206.1 (Protein)
NC_000913.2 (DNA/RNA sequence)
YP_488960.1 (Protein)
NC_007779.1 (DNA/RNA sequence)
PfamPF00749 (tRNA-synt_1c)
PF03950 (tRNA-synt_1c_C)
[Graphical view]

KEGG pathways
MAP codePathways
MAP00251Glutamate metabolism
MAP00970Aminoacyl-tRNA biosynthesis

UniProtKB:Accession NumberP00962
Entry nameSYQ_ECOLI
ActivityATP + L-glutamine + tRNA(Gln) = AMP + diphosphate + L-glutaminyl-tRNA(Gln).
SubunitMonomer.
Subcellular locationCytoplasm.
Cofactor

Compound table: links to PDB-related databases & PoSSuM

CofactorsSubstratesProductsintermediates
KEGG-idC00305C00002C00064C01640C00020C00013C02282
CompoundMagnesiumATPL-GlutaminetRNA(Gln)AMPPyrophosphateL-Glutaminyl-tRNA(Gln)Glutaminyl-adenylate
Typedivalent metal (Ca2+, Mg2+)amine group,nucleotideamino acids,amide groupnucleic acidsamine group,nucleotidephosphate group/phosphate ionamino acids,amide group,nucleic acids
ChEBI18420
15422
18050
58359

16027
29888


PubChem888
5957
6992086
5961

6083
21961011
1023


                
1euqA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euyA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1exdA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gsgP01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtrA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtsA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1nylA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0bA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0cA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrsA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrtA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qruA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qtqA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1zjwA01UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euqA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euyA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1exdA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gsgP02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtrA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtsA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1nylA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0bA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0cA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrsA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrtA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qruA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qtqA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1zjwA02UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euqA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euyA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1exdA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gsgP03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtrA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtsA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1nylA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0bA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0cA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrsA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrtA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qruA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qtqA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1zjwA03UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euqA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euyA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1exdA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gsgP04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtrA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1gtsA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1nylA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0bA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0cA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrsA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qrtA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qruA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1qtqA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1zjwA04UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1euqA05UnboundUnboundUnboundBound:G-C-C-A_976(chain B:3'-terminus)UnboundUnboundUnboundIntermediate-analogue:QSI
1euyA05UnboundUnboundUnboundBound:G-C-C-A_976(chain B:3'-terminus)UnboundUnboundUnboundIntermediate-analogue:QSI
1exdA05UnboundUnboundUnboundBound:G-C-C-A_976(chain B:3'-terminus)Analogue:__AUnboundUnboundUnbound
1gsgP05UnboundUnboundUnboundBound:G-C-C-A_76(chain T:3'-terminus)UnboundUnboundUnboundUnbound
1gtrA05UnboundBound:ATPUnboundBound:G-C-C-A_76(chain B:3'-terminus)UnboundUnboundUnboundUnbound
1gtsA05UnboundUnboundUnboundBound:G-C-C-A_76(chain B:3'-terminus)Bound:AMPUnboundUnboundUnbound
1nylA05UnboundUnboundUnboundUnboundUnboundUnboundUnboundUnbound
1o0bA05UnboundUnboundBound:GLNBound:G-C-C-A_976(chain B:3'-terminus)Analogue:AMPAnalogue:SO4 1394UnboundUnbound
1o0cA05UnboundUnboundAnalogue:GLUBound:G-C-C-A_976(chain B:3'-terminus)Bound:AMPAnalogue:SO4 1394UnboundUnbound
1qrsA05UnboundBound:ATPUnboundBound:G-C-C-A_76(chain B:3'-terminus)UnboundUnboundUnboundUnbound
1qrtA05UnboundBound:ATPUnboundBound:G-C-C-A_76(chain B:3'-terminus)UnboundUnboundUnboundUnbound
1qruA05UnboundBound:ATPUnboundBound:G-C-C-A_76(chain B:3'-terminus)UnboundUnboundUnboundUnbound
1qtqA05UnboundUnboundUnboundBound:G-C-C-A_976(chain B:3'-terminus)UnboundAnalogue:SO4 1394UnboundIntermediate-analogue:QSI
1zjwA05UnboundUnboundBound:GLNAnalogue:G-C-C-A_976(chain B:3'-terminus)Bound:AMPAnalogue:SO4 1394UnboundUnbound

Active-site residues
resource
literature [33]
pdbCatalytic residuesMain-chain involved in catalysiscomment
           
1euqA01 
 
 
1euyA01 
 
 
1exdA01 
 
 
1gsgP01 
 
 
1gtrA01 
 
 
1gtsA01 
 
 
1nylA01 
 
 
1o0bA01 
 
 
1o0cA01 
 
 
1qrsA01 
 
 
1qrtA01 
 
 
1qruA01 
 
 
1qtqA01 
 
 
1zjwA01 
 
 
1euqA02 
 
 
1euyA02 
 
 
1exdA02 
 
 
1gsgP02 
 
 
1gtrA02 
 
 
1gtsA02 
 
 
1nylA02 
 
 
1o0bA02 
 
 
1o0cA02 
 
 
1qrsA02 
 
 
1qrtA02 
 
 
1qruA02 
 
 
1qtqA02 
 
 
1zjwA02 
 
 
1euqA03ARG 260;LYS 270
 
 
1euyA03ARG 260;LYS 270
 
 
1exdA03ARG 260;LYS 270
 
 
1gsgP03ARG 260;LYS 270
 
 
1gtrA03ARG 260;LYS 270
 
 
1gtsA03ARG 260;LYS 270
 
 
1nylA03ARG 260;LYS 270
 
 
1o0bA03ARG 260;LYS 270
 
 
1o0cA03ARG 260;LYS 270
 
 
1qrsA03ARG 260;LYS 270
 
 
1qrtA03ARG 260;LYS 270
 
 
1qruA03ARG 260;LYS 270
 
 
1qtqA03ARG 260;LYS 270
 
 
1zjwA03ARG 260;LYS 270
 
 
1euqA04 
 
 
1euyA04 
 
 
1exdA04 
 
 
1gsgP04 
 
 
1gtrA04 
 
 
1gtsA04 
 
 
1nylA04 
 
 
1o0bA04 
 
 
1o0cA04 
 
 
1qrsA04 
 
 
1qrtA04 
 
 
1qruA04 
 
 
1qtqA04 
 
 
1zjwA04 
 
 
1euqA05GLU 34;ASN 36;HIS 43
GLU 34
 
1euyA05GLU 34;ASN 36;HIS 43
GLU 34
 
1exdA05GLU 34;ASN 36;HIS 43
GLU 34
 
1gsgP05GLU 34;ASN 36;HIS 43
GLU 34
 
1gtrA05GLU 34;ASN 36;HIS 43
GLU 34
 
1gtsA05GLU 34;ASN 36;HIS 43
GLU 34
 
1nylA05GLU 34;ASN 36;HIS 43
GLU 34
 
1o0bA05GLU 34;ASN 36;HIS 43
GLU 34
 
1o0cA05GLU 34;ASN 36;HIS 43
GLU 34
 
1qrsA05GLU 34;ASN 36;HIS 43
GLU 34
mutant D235G
1qrtA05GLU 34;ASN 36;HIS 43
GLU 34
mutant D235G
1qruA05GLU 34;ASN 36;HIS 43
GLU 34
 
1qtqA05GLU 34;ASN 36;HIS 43
GLU 34
 
1zjwA05GLU 34;ASN 36;HIS 43
GLU 34
 

References for Catalytic Mechanism
ReferencesSectionsNo. of steps in catalysis
[10]Fig.13, p.8768-8771
[33]Fig.9, p.446-4472

references
[1]
PubMed ID2459391
JournalJ Mol Biol
Year1988
Volume202
Pages121-6
AuthorsPerona JJ, Swanson R, Steitz TA, Soll D
TitleOverproduction and purification of Escherichia coli tRNA(2Gln) and its use in crystallization of the glutaminyl-tRNA synthetase-tRNA(Gln) complex.
[2]
PubMed ID2686030
JournalScience
Year1989
Volume246
Pages1152-4
AuthorsPerona JJ, Swanson RN, Rould MA, Steitz TA, Soll D
TitleStructural basis for misaminoacylation by mutant E. coli glutaminyl-tRNA synthetase enzymes.
[3]
CommentsX-RAY CRYSTALLOGRAPHY (2.8 ANGSTROMS).
Medline ID90069584
PubMed ID2479982
JournalScience
Year1989
Volume246
Pages1135-42
AuthorsRould MA, Perona JJ, Soll D, Steitz TA
TitleStructure of E. coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP at 2.8 A resolution.
Related PDB1gsg
Related UniProtKBP00962
[4]
PubMed ID2194108
JournalMol Biol Rep
Year1990
Volume14
Pages213-4
AuthorsSteitz TA, Rould MA, Perona JJ
TitleStructural basis of tRNA discrimination as derived from the high resolution crystal structure of glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP.
[5]
PubMed ID1915346
JournalEur J Biochem
Year1991
Volume200
Pages739-45
AuthorsBhattacharyya T, Bhattacharyya A, Roy S
TitleA fluorescence spectroscopic study of glutaminyl-tRNA synthetase from Escherichia coli and its implications for the enzyme mechanism.
[6]
PubMed ID1857423
JournalNature
Year1991
Volume352
Pages258-60
AuthorsJahn M, Rogers MJ, Soll D
TitleAnticodon and acceptor stem nucleotides in tRNA(Gln) are major recognition elements for E. coli glutaminyl-tRNA synthetase.
[7]
CommentsX-RAY CRYSTALLOGRAPHY (2.5 ANGSTROMS).
Medline ID91312443
PubMed ID1857417
JournalNature
Year1991
Volume352
Pages213-8
AuthorsRould MA, Perona JJ, Steitz TA
TitleStructural basis of anticodon loop recognition by glutaminyl-tRNA synthetase.
Related PDB1gtr
Related UniProtKBP00962
[8]
PubMed ID2011598
JournalProc Natl Acad Sci U S A
Year1991
Volume88
Pages2903-7
AuthorsPerona JJ, Rould MA, Steitz TA, Risler JL, Zelwer C, Brunie S
TitleStructural similarities in glutaminyl- and methionyl-tRNA synthetases suggest a common overall orientation of tRNA binding.
[9]
PubMed ID8369295
JournalBiochemistry
Year1993
Volume32
Pages9268-73
AuthorsBhattacharyya T, Roy S
TitleA fluorescence spectroscopic study of substrate-induced conformational changes in glutaminyl-tRNA synthetase.
[10]
CommentsX-ray crystallography
PubMed ID8364025
JournalBiochemistry
Year1993
Volume32
Pages8758-71
AuthorsPerona JJ, Rould MA, Steitz TA
TitleStructural basis for transfer RNA aminoacylation by Escherichia coli glutaminyl-tRNA synthetase.
Related PDB1gts
[11]
PubMed ID7515283
JournalBiochimie
Year1993
Volume75
Pages1051-60
AuthorsDyson MR, Mandal N, RajBhandary UL
TitleRelationship between the structure and function of Escherichia coli initiator tRNA.
[12]
PubMed ID8199248
JournalBiochimie
Year1993
Volume75
Pages1125-36
AuthorsMcClain WH, Schneider J, Gabriel K
TitleAssociation of tRNA(Gln) acceptor identity with phosphate-sugar backbone interactions observed in the crystal structure of the Escherichia coli glutaminyl-tRNA synthetase-tRNA(Gln) complex.
[13]
PubMed ID8199243
JournalBiochimie
Year1993
Volume75
Pages1083-90
AuthorsRogers MJ, Weygand-Durasevic I, Schwob E, Sherman JM, Rogers KC, Adachi T, Inokuchi H, Soll D
TitleSelectivity and specificity in the recognition of tRNA by E coli glutaminyl-tRNA synthetase.
[14]
PubMed ID7505222
JournalEMBO J
Year1993
Volume12
Pages5201-8
AuthorsSchwob E, Soll D
TitleSelection of a 'minimal' glutaminyl-tRNA synthetase and the evolution of class I synthetases.
[15]
PubMed ID8360919
JournalJ Mol Evol
Year1993
Volume37
Pages5-10
AuthorsDi Giulio M
TitleOrigin of glutaminyl-tRNA synthetase: an example of palimpsest?
[16]
PubMed ID7680483
JournalProc Natl Acad Sci U S A
Year1993
Volume90
Pages2010-4
AuthorsWeygand-Durasevic I, Schwob E, Soll D
TitleAcceptor end binding domain interactions ensure correct aminoacylation of transfer RNA.
[17]
PubMed ID8011621
JournalBiochemistry
Year1994
Volume33
Pages7560-7
AuthorsArnez JG, Steitz TA
TitleCrystal structure of unmodified tRNA(Gln) complexed with glutaminyl-tRNA synthetase and ATP suggests a possible role for pseudo-uridines in stabilization of RNA structure.
[18]
PubMed ID8027995
JournalJ Mol Biol
Year1994
Volume240
Pages111-8
AuthorsWeygand-Durasevic I, Rogers MJ, Soll D
TitleConnecting anticodon recognition with the active site of Escherichia coli glutaminyl-tRNA synthetase.
[19]
PubMed ID7506418
JournalProc Natl Acad Sci U S A
Year1994
Volume91
Pages291-5
AuthorsRogers MJ, Adachi T, Inokuchi H, Soll D
TitleFunctional communication in the recognition of tRNA by Escherichia coli glutaminyl-tRNA synthetase.
[20]
PubMed ID8643392
JournalNucleic Acids Symp Ser
Year1995
Volume(33)
Pages40-2
AuthorsIbba M, Thomann HU, Hong KW, Sherman JM, Weygand-Durasevic I, Sever S, Stange-Thomann N, Praetorius M, Soll D
TitleSubstrate selection by aminoacyl-tRNA synthetases.
[21]
CommentsX-ray crystallography
PubMed ID8942633
JournalBiochemistry
Year1996
Volume35
Pages14725-33
AuthorsArnez JG, Steitz TA
TitleCrystal structures of three misacylating mutants of Escherichia coli glutaminyl-tRNA synthetase complexed with tRNA(Gln) and ATP.
Related PDB1qrs,1qrt,1qru
[22]
PubMed ID8555233
JournalBiochemistry
Year1996
Volume35
Pages601-7
AuthorsSherman JM, Soll D
TitleAminoacyl-tRNA synthetases optimize both cognate tRNA recognition and discrimination against noncognate tRNAs.
[23]
PubMed ID8601833
JournalJ Mol Biol
Year1996
Volume256
Pages818-28
AuthorsSherman JM, Thomann HU, Soll D
TitleFunctional connectivity between tRNA binding domains in glutaminyl-tRNA synthetase.
[24]
PubMed ID8917315
JournalMol Gen Genet
Year1996
Volume252
Pages717-22
AuthorsKitabatake M, Ibba M, Hong KW, Soll D, Inokuchi H
TitleGenetic analysis of functional connectivity between substrate recognition domains of Escherichia coli glutaminyl-tRNA synthetase.
[25]
PubMed ID8692925
JournalProc Natl Acad Sci U S A
Year1996
Volume93
Pages6953-8
AuthorsIbba M, Hong KW, Sherman JM, Sever S, Soll D
TitleInteractions between tRNA identity nucleotides and their recognition sites in glutaminyl-tRNA synthetase determine the cognate amino acid affinity of the enzyme.
[26]
PubMed ID9372179
JournalBiol Chem
Year1997
Volume378
Pages1103-17
AuthorsFreist W, Gauss DH, Ibba M, Soll D
TitleGlutaminyl-tRNA synthetase.
[27]
PubMed ID9185564
JournalNucleic Acids Res
Year1997
Volume25
Pages2562-5
AuthorsLustig B, Arora S, Jernigan RL
TitleRNA base-amino acid interaction strengths derived from structures and sequences.
[28]
PubMed ID9657697
JournalBiochemistry
Year1998
Volume37
Pages9836-42
AuthorsLiu J, Ibba M, Hong KW, Soll D
TitleThe terminal adenosine of tRNA(Gln) mediates tRNA-dependent amino acid recognition by glutaminyl-tRNA synthetase.
[29]
PubMed ID9799245
JournalEMBO J
Year1998
Volume17
Pages6377-84
AuthorsStoldt M, Wohnert J, Gorlach M, Brown LR
TitleThe NMR structure of Escherichia coli ribosomal protein L25 shows homology to general stress proteins and glutaminyl-tRNA synthetases.
[30]
PubMed ID9746349
JournalEur J Biochem
Year1998
Volume256
Pages80-7
AuthorsSiatecka M, Rozek M, Barciszewski J, Mirande M
TitleModular evolution of the Glx-tRNA synthetase family--rooting of the evolutionary tree between the bacteria and archaea/eukarya branches.
[31]
PubMed ID9738468
JournalFEBS Lett
Year1998
Volume434
Pages149-54
AuthorsHong KW, Ibba M, Soll D
TitleRetracing the evolution of amino acid specificity in glutaminyl-tRNA synthetase.
[32]
PubMed ID9568911
JournalProtein Sci
Year1998
Volume7
Pages1046-51
AuthorsMandal AK, Bhattacharyya A, Bhattacharyya S, Bhattacharyya T, Roy S
TitleA cognate tRNA specific conformational change in glutaminyl-tRNA synthetase and its implication for specificity.
[33]
CommentsX-RAY CRYSTALLOGRAPHY (2.4 ANGSTROMS).
Medline ID98230743
PubMed ID9562563
JournalStructure
Year1998
Volume6
Pages439-49
AuthorsRath VL, Silvian LF, Beijer B, Sproat BS, Steitz TA
TitleHow glutaminyl-tRNA synthetase selects glutamine.
Related PDB1qtq
Related UniProtKBP00962
[34]
PubMed ID10801842
JournalJ Biol Chem
Year2000
Volume275
Pages21768-72
AuthorsKim T, Park SG, Kim JE, Seol W, Ko YG, Kim S
TitleCatalytic peptide of human glutaminyl-tRNA synthetase is essential for its assembly to the aminoacyl-tRNA synthetase complex.
[35]
CommentsX-RAY CRYSTALLOGRAPHY (2.6 ANGSTROMS).
Medline ID20318776
PubMed ID10860750
JournalJ Mol Biol
Year2000
Volume299
Pages431-46
AuthorsSherlin LD, Bullock TL, Newberry KJ, Lipman RS, Hou YM, Beijer B, Sproat BS, Perona JJ
TitleInfluence of transfer RNA tertiary structure on aminoacylation efficiency by glutaminyl and cysteinyl-tRNA synthetases.
Related PDB1euq,1euy
Related UniProtKBP00962
[36]
CommentsX-ray crystallography
PubMed ID10881199
JournalNat Struct Biol
Year2000
Volume7
Pages497-504
AuthorsBullock TL, Sherlin LD, Perona JJ
TitleTertiary core rearrangements in a tight binding transfer RNA aptamer.
Related PDB1exd
[37]
PubMed ID11224555
JournalNat Struct Biol
Year2001
Volume8
Pages189-91
AuthorsFrancklyn CS
TitleCharging two for the price of one.
[38]
PubMed ID11724963
JournalProc Natl Acad Sci U S A
Year2001
Volume98
Pages14244-9
AuthorsPatzelt H, Rudiger S, Brehmer D, Kramer G, Vorderwulbecke S, Schaffitzel E, Waitz A, Hesterkamp T, Dong L, Schneider-Mergener J, Bukau B, Deuerling E
TitleBinding specificity of Escherichia coli trigger factor.
[39]
CommentsX-ray crystallography
PubMed ID12691748
JournalJ Mol Biol
Year2003
Volume328
Pages395-408
AuthorsBullock TL, Uter N, Nissan TA, Perona JJ
TitleAmino acid discrimination by a class I aminoacyl-tRNA synthetase specified by negative determinants.
Related PDB1o0b,1o0c
[40]
CommentsX-ray crystallography
PubMed ID12737824
JournalStructure (Camb)
Year2003
Volume11
Pages591-603
AuthorsSherlin LD, Perona JJ
TitletRNA-dependent active site assembly in a class I aminoacyl-tRNA synthetase.
Related PDB1nyl
[41]
PubMed ID15845536
JournalJ Biol Chem
Year2005
Volume280
Pages23978-86
AuthorsGruic-Sovulj I, Uter N, Bullock T, Perona JJ
TitletRNA-dependent aminoacyl-adenylate hydrolysis by a nonediting class I aminoacyl-tRNA synthetase.
Related PDB1zjw

comments
According to literature [26], this enzyme utilizes magnesium ion as a cofactor, which is bound to beta- and gamma-phosphate groups of ATP, without any interaction with enzyme residues.
This enzyme catalyzes two successive transfer reactions, a phosphoryl transfer, and an acyl transfer. According to the literature [10] & [33], the catalytic reactions proceed as follows:
(A) Transfer of adenylate from ATP to carboxyl oxygen of glutamine substrate:
(A1) The carboxylate oxygen makes a nucleophilic attack on the transferred group, alpha-phosphate group of ATP, forming a pentacovalent transtion-state.
(A2) The transferred group is stabilized by mainchain amide of Glu34, sidechains of His43 and Lys270, whereas the leaving beta- and gamma-phosphate groups are stabilized by the cofactor, magnesium ion, along with sidechains of Lys270 and Asn36.
(A3) This reaction gives glutaminyl-adenylate intermediate and pyrophosphate. (SN2-like reaction)
(B) Transfer of acyl group from glutaminyl-adenylate intermediate to 2'-OH of 3'-terminus of tRNA:
(B1) Glu34 acts as a general base to deprotonate the acceptor group, 2'-OH group of tRNA ribose.
(B2) The activated acceptor group, 2'-hydroxyl oxygen makes a nucleophilic attack on the transferred acyl group (carbonyl carbon) of the intermediate.
(B3) The transferred group, acyl group, gives an oxyanion tetrahedral intermediate with negative charge. This negatively charge will probably be stabilized by Arg260, through a water molecule (see [33]). The leaving phosphate group of AMP is stabilized by mainchain amide of Glu34 and sidechains of His43 and Lys270.
(B4) Finally, covalent bond between 2'-oxygen and acyl group is formed, with release of AMP.

createdupdated
2004-09-142009-02-26


Copyright: Nozomi Nagano, JST & CBRC-AIST
Funded by PRESTO/Japan Science and Technology Corporation (JST) (December 2001 - November 2004)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2006)
Funded by Grant-in-Aid for Scientific Research (B)/Japan Society for the Promotion of Science (JSPS) (April 2005 - March 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (September 2005 - September 2008)
Funded by BIRD/Japan Science and Technology Corporation (JST) (October 2007 - September 2010)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2011 - March 2012)
Funded by Grant-in-Aid for Publication of Scientific Research Results/Japan Society for the Promotion of Science (JSPS) (April 2012 - March 2013)
Supported by the commission for the Development of Artificial Gene Synthesis Technology for Creating Innovative Biomaterial from the Ministry of Economy, Trade and Industry (METI) (October 2012 - )
© Biotechnology Research Institute for Drug Discovery, AIST, 2015-2016 All Rights Reserved.
© Computational Biology Research Center, AIST, 2004-2016 All Rights Reserved.